Boundary Characteristics Orthogonal Polynomials

Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process...

Full description

Saved in:
Bibliographic Details
Published in:Advanced Numerical and Semi-Analytical Methods for Differential Equations pp. 45 - 52
Main Authors: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Format: Book Chapter
Language:English
Published: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Edition:1
Subjects:
ISBN:9781119423423, 1119423422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method.
AbstractList Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method.
Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  givenname: Snehashish
  surname: Chakraverty
  fullname: Chakraverty, Snehashish
– sequence: 2
  givenname: Nisha
  surname: Mahato
  fullname: Mahato, Nisha
– sequence: 3
  givenname: Perumandla
  surname: Karunakar
  fullname: Karunakar, Perumandla
– sequence: 4
  givenname: Tharasi
  surname: Dilleswar Rao
  fullname: Dilleswar Rao, Tharasi
BookMark eNptkMtOwzAQRY14CFr6Ad31B1I8HseOl1DxkiqVBawtx3GIRYhDnAqVryclLKjEYjSa0T0z0pmQkyY0jpA50CVQyq6UzABAcYZcwNJW_IjM_uyQHh_MDM_IBKiikmVU4jmZxehzipJmKpXqglzdhG1TmG63WFWmM7Z3nY-9t3Gx6foqvIbG1IunUO-a8O5NHS_JaTk0N_vtU_Jyd_u8ekjWm_vH1fU68cChTFClJUPnKKAQyHOTKmdskVqjMmAiTyFntrAFSmvKnFMGUgBFxS1lRclynBIY73762u20y0N4ixqo3lvQBxb0YGFfA5P8wxxmv3z7k2-LcsizMd924WPrYj8i1jV9Z2pbmXawEXUqOTDGNaZa4ADNR8g75_T4IhOZQirwG0upd5I
ContentType Book Chapter
Copyright 2019 Wiley
2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley
– notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch4
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781119423430
9781119423447
9781119423461
1119423449
1119423430
1119423465
Edition 1
EndPage 52
ExternalDocumentID 10.1002/9781119423461.ch4
EBC5741224_35_63
8689306
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABQPQ
ADUVA
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
GEOUK
GQOVZ
IETMW
IPJKO
IVUIE
JFSCD
KKBTI
LMJTD
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
YPLAZ
ZEEST
ABAZT
ABBFG
ACGYG
ACLGV
ACNUM
AENVZ
AHWGJ
FFUUA
WIIVT
ID FETCH-LOGICAL-i141f-395f23ee0136634ba59eacd5ca98126b51b2cdcd37cafb40217610394c02df2b3
ISBN 9781119423423
1119423422
IngestDate Wed Nov 27 04:58:37 EST 2019
Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:01 EDT 2025
Fri Nov 11 10:38:51 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Linear systems
Boundary conditions
Approximation algorithms
Calculus
Method of moments
Standards
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i141f-395f23ee0136634ba59eacd5ca98126b51b2cdcd37cafb40217610394c02df2b3
OCLC 1090728073
PQID EBC5741224_35_63
PageCount 8
ParticipantIDs ieee_books_8689306
proquest_ebookcentralchapters_5741224_35_63
wiley_ebooks_10_1002_9781119423461_ch4_ch4
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References Bhat (c04-cit-0001) 1985; 102
Singh, Chakraverty (c04-cit-0006) 1994; 173
Agrawal (c04-cit-0008) 2002; 272
Johnson (c04-cit-0005) 2014
Singh, Chakraverty (c04-cit-0004) 1994; 10
Bhat, Chakraverty (c04-cit-0003) 2004
Chakraverty, Saini, Panigrahi (c04-cit-0007) 2008; 5
Bhat (c04-cit-0002) 1986; 105
References_xml – volume: 173
  start-page: 157
  issue: 2
  year: 1994
  end-page: 178
  ident: c04-cit-0006
  article-title: Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables
  publication-title: Journal of Sound and Vibration
– volume: 105
  start-page: 199
  issue: 2
  year: 1986
  end-page: 210
  ident: c04-cit-0002
  article-title: Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh‐Ritz method
  publication-title: Journal of Sound and Vibration
– year: 2004
  ident: c04-cit-0003
  article-title: Numerical Analysis in Engineering
– volume: 5
  start-page: 449
  issue: 5
  year: 2008
  end-page: 459
  ident: c04-cit-0007
  article-title: Prediction of product parameters of fly ash cement bricks using two dimensional orthogonal polynomials in the regression analysis
  publication-title: Computers and Concrete
– volume: 272
  start-page: 368
  issue: 1
  year: 2002
  end-page: 379
  ident: c04-cit-0008
  article-title: Formulation of Euler–Lagrange equations for fractional variational problems
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 10
  start-page: 1027
  issue: 12
  year: 1994
  end-page: 1043
  ident: c04-cit-0004
  article-title: Boundary characteristic orthogonal polynomials in numerical approximation
  publication-title: Communications in Numerical Methods in Engineering
– year: 2014
  ident: c04-cit-0005
  article-title: Gram‐Schmidt Orthogonalization Process
– volume: 102
  start-page: 493
  issue: 4
  year: 1985
  end-page: 499
  ident: c04-cit-0001
  article-title: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh‐Ritz method
  publication-title: Journal of Sound and Vibration
SSID ssib037089579
ssj0002152863
ssib035724529
ssib043664869
ssib050313482
Score 1.5611484
Snippet Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have...
Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to...
SourceID wiley
proquest
ieee
SourceType Enrichment Source
Publisher
StartPage 45
SubjectTerms boundary characteristic orthogonal polynomials
boundary value problem
Galerkin's method
Gram‐Schmidt orthogonalization procedure
orthogonal polynomials
Rayleigh‐Ritz method
Title Boundary Characteristics Orthogonal Polynomials
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689306
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=63&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZg4QBcWB6ivJQD4sAqbBM_El-BAtLSbgW70t4ix7FpRElL3MIuv56xnaTJLhcOHBq1qRWNZ5zxeF4fQi8EkYxLiUMtUxUSnRah4CIKNY1ymQvFtXTd9T8ls1l6dsbnTf68cXACSVWl5-d8_V9FDfdA2LZ09h_E3T0UbsB3EDpcQexwvWQRD32vPue4DenPtj4U4zsBfFHfy9D1H_Gu66nDjXatGEDpeYiUjfWdT35sey68LuxvQZt9UlilFhZ-yXRe5KlYCAfFBIvKLDolfyTqbSW--fTtuaptrKBYdn-_syWI5peoDz6LlU9UErUwZX8Fv3GIT_WFSwnoN5U-roH6r86FOV8tL2xhtVgO_Be2ZGrgv3DKb3CoBe3Lwcgjvg75ior3LWN741j0Wi7Ibj_rsgxTBsaYbcd-PUlABd74MDk-PWqVDaaJCzp3v5Nx2g9ZEswYST36utvWLQBwyrBDm2oIjJueYR3Bbdh8HB9eIbCB7xmcZPrnIWfQnNxFd2yRS2CrT2Au--iaqu6h29Ouh6-5jw5b_geX-B_s-B_0-P8Anb6fnLz9GDbwGmEZkUiHmFMdY6Vs1z6GSS4oh124oFJwsPpYDm9rLAtZ4EQKnRN7eGU2cYDIcVzoOMcP0V61qtQjFERE40gmeZ4oQqhgOedUUImLuCA41nqE9u3cM_temKyRywgdtJzIXGZAk44s_dRNRsHaBQszwzRjeIReOWb5oSbz7bbjbMDnDPhsPyP0cjB4OOh3uXYD14V-_DfCnqBbu4X6FO1t6q16hm7Kn5vS1M-bdfQHVZCAMQ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Dilleswar+Rao%2C+Tharasi&rft.atitle=Boundary+Characteristics+Orthogonal+Polynomials&rft.date=2019-01-01&rft.pub=Wiley&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch4&rft.externalDocID=8689306
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg