Boundary Characteristics Orthogonal Polynomials
Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process...
Uloženo v:
| Vydáno v: | Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 45 - 52 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley
2019
John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Vydání: | 1 |
| Témata: | |
| ISBN: | 9781119423423, 1119423422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method. |
|---|---|
| AbstractList | Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method. Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to satisfy the boundary conditions of the considered problem. This chapter presents the Gram‐Schmidt orthogonalization process for generating orthogonal polynomials. From a set of functions, one can construct appropriate orthogonal functions by using the well‐known procedure known as the Gram‐Schmidt orthogonalization process. The first member of BCOPs set is chosen as the simplest polynomial of the least order which satisfies the boundary conditions of the considered problem. The chapter explains how to solve a boundary value problem by using BCOPs with Galerkin's method. It also presents another approach viz. Rayleigh‐Ritz method and solves a boundary value problem by using BCOPs with the Rayleigh‐Ritz method. |
| Author | Karunakar, Perumandla Dilleswar Rao, Tharasi Mahato, Nisha Chakraverty, Snehashish |
| Author_xml | – sequence: 1 givenname: Snehashish surname: Chakraverty fullname: Chakraverty, Snehashish – sequence: 2 givenname: Nisha surname: Mahato fullname: Mahato, Nisha – sequence: 3 givenname: Perumandla surname: Karunakar fullname: Karunakar, Perumandla – sequence: 4 givenname: Tharasi surname: Dilleswar Rao fullname: Dilleswar Rao, Tharasi |
| BookMark | eNptkMtOwzAQRY14CFr6Ad31B1I8HseOl1DxkiqVBawtx3GIRYhDnAqVryclLKjEYjSa0T0z0pmQkyY0jpA50CVQyq6UzABAcYZcwNJW_IjM_uyQHh_MDM_IBKiikmVU4jmZxehzipJmKpXqglzdhG1TmG63WFWmM7Z3nY-9t3Gx6foqvIbG1IunUO-a8O5NHS_JaTk0N_vtU_Jyd_u8ekjWm_vH1fU68cChTFClJUPnKKAQyHOTKmdskVqjMmAiTyFntrAFSmvKnFMGUgBFxS1lRclynBIY73762u20y0N4ixqo3lvQBxb0YGFfA5P8wxxmv3z7k2-LcsizMd924WPrYj8i1jV9Z2pbmXawEXUqOTDGNaZa4ADNR8g75_T4IhOZQirwG0upd5I |
| ContentType | Book Chapter |
| Copyright | 2019 Wiley 2019 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2019 Wiley – notice: 2019 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119423461.ch4 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781119423430 9781119423447 9781119423461 1119423449 1119423430 1119423465 |
| Edition | 1 |
| EndPage | 52 |
| ExternalDocumentID | 10.1002/9781119423461.ch4 EBC5741224_35_63 8689306 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV ABARN ABQPQ ADUVA ADVEM AERYV AFOJC AFPKT AJFER AK3 AKQZE ALMA_UNASSIGNED_HOLDINGS AUUOE AZZ BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ CZZ ECNEQ ERSLE GEOUK GQOVZ IETMW IPJKO IVUIE JFSCD KKBTI LMJTD LQKAK LWYJN LYPXV MRDEW OCL OHILO OODEK W1A YPLAZ ZEEST ABAZT ABBFG ACGYG ACLGV ACNUM AENVZ AHWGJ FFUUA WIIVT |
| ID | FETCH-LOGICAL-i141f-395f23ee0136634ba59eacd5ca98126b51b2cdcd37cafb40217610394c02df2b3 |
| ISBN | 9781119423423 1119423422 |
| IngestDate | Wed Nov 27 04:58:37 EST 2019 Sat Nov 15 22:28:24 EST 2025 Tue Oct 21 07:34:01 EDT 2025 Fri Nov 11 10:38:51 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Linear systems Boundary conditions Approximation algorithms Calculus Method of moments Standards |
| LCCallNum | QA371 .C435 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i141f-395f23ee0136634ba59eacd5ca98126b51b2cdcd37cafb40217610394c02df2b3 |
| OCLC | 1090728073 |
| PQID | EBC5741224_35_63 |
| PageCount | 8 |
| ParticipantIDs | ieee_books_8689306 proquest_ebookcentralchapters_5741224_35_63 wiley_ebooks_10_1002_9781119423461_ch4_ch4 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-01-01 2019-04-30 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA |
| PublicationTitle | Advanced Numerical and Semi-Analytical Methods for Differential Equations |
| PublicationYear | 2019 |
| Publisher | Wiley John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| References | Bhat (c04-cit-0001) 1985; 102 Singh, Chakraverty (c04-cit-0006) 1994; 173 Agrawal (c04-cit-0008) 2002; 272 Johnson (c04-cit-0005) 2014 Singh, Chakraverty (c04-cit-0004) 1994; 10 Bhat, Chakraverty (c04-cit-0003) 2004 Chakraverty, Saini, Panigrahi (c04-cit-0007) 2008; 5 Bhat (c04-cit-0002) 1986; 105 |
| References_xml | – volume: 173 start-page: 157 issue: 2 year: 1994 end-page: 178 ident: c04-cit-0006 article-title: Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables publication-title: Journal of Sound and Vibration – volume: 105 start-page: 199 issue: 2 year: 1986 end-page: 210 ident: c04-cit-0002 article-title: Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh‐Ritz method publication-title: Journal of Sound and Vibration – year: 2004 ident: c04-cit-0003 article-title: Numerical Analysis in Engineering – volume: 5 start-page: 449 issue: 5 year: 2008 end-page: 459 ident: c04-cit-0007 article-title: Prediction of product parameters of fly ash cement bricks using two dimensional orthogonal polynomials in the regression analysis publication-title: Computers and Concrete – volume: 272 start-page: 368 issue: 1 year: 2002 end-page: 379 ident: c04-cit-0008 article-title: Formulation of Euler–Lagrange equations for fractional variational problems publication-title: Journal of Mathematical Analysis and Applications – volume: 10 start-page: 1027 issue: 12 year: 1994 end-page: 1043 ident: c04-cit-0004 article-title: Boundary characteristic orthogonal polynomials in numerical approximation publication-title: Communications in Numerical Methods in Engineering – year: 2014 ident: c04-cit-0005 article-title: Gram‐Schmidt Orthogonalization Process – volume: 102 start-page: 493 issue: 4 year: 1985 end-page: 499 ident: c04-cit-0001 article-title: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh‐Ritz method publication-title: Journal of Sound and Vibration |
| SSID | ssib037089579 ssj0002152863 ssib035724529 ssib043664869 ssib050313482 |
| Score | 1.5612267 |
| Snippet | Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have... Boundary characteristic orthogonal polynomials (BCOPs) may be generated by using the Gram‐Schmidt orthogonalization procedure. The generated BCOPs have to... |
| SourceID | wiley proquest ieee |
| SourceType | Enrichment Source Publisher |
| StartPage | 45 |
| SubjectTerms | boundary characteristic orthogonal polynomials boundary value problem Galerkin's method Gram‐Schmidt orthogonalization procedure orthogonal polynomials Rayleigh‐Ritz method |
| Title | Boundary Characteristics Orthogonal Polynomials |
| URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689306 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=63&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdgcAAujA9RvpQD4sAUltqOnVyBAtLUroJN2i1ybGeNKGmJW9j463m2kzTZuHDgUKtNrch5z3l-3z-EXknOlYaTJ0xYDgZKXOBQgJkCA4-0FDxSpHBgE3w2S87O0nmTP28cnACvquTiIl3_V1bDNWC2LZ39B3Z3N4UL8B2YDiOwHcYrGvHQ9-pzjtuQ_mzrQzG-E8BX_b0MXf8R77qeOtxo14oBhJ6HSNlY3_nkx7bnwuvC_ha02SeFVXph4ZdM50WeioVwUEywqcyiE_JHot5W4ptP357r2sYK1LL7-4MtQTS_RH3wRax8opKohSn7O_idQ3yqL11KQL-p9HENqz93Lsz5anlpC6vFcuC_sCVTA_-FE34DoxakbwpKHvV1yNdEvG8Z25vHxm_lgu7Osy7LMGGgjNl27Dc5BxF469Pk-PSoFTYk5i7o3P3mUdIPWVLCGE08-ro71i0AcMKIQ5tqFoibnmHdgtuweYQPry2wge8ZWDJ9e8gpNCf30T1b5BLY6hN4ln10Q1cP0N1p18PXPESHLf2DK_QPdvQPevR_hE4_Tk7efw4beI2wHNNxEZIU3kyite3axwjNRZzCKaxiKVLQ-lgej3MslVSES1Hk1BqvzCYOUBlhVeCcPEZ71arST1CApWa50jTStn8bzROw2RTRBcgBiQVWI7Rvnz2z74XJGr6M0EFLicxlBjTpyNI_usli0HZBw8xInDEyQm8csfxUk_l22zgb0DkDOtvPCL0eTB5O-l2u3cS1Kp7-bWHP0J3dRn2O9jb1Vr9At-XPTWnql80--gMC138m |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Dilleswar+Rao%2C+Tharasi&rft.atitle=Boundary+Characteristics+Orthogonal+Polynomials&rft.date=2019-01-01&rft.pub=Wiley&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch4&rft.externalDocID=8689306 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg |

