A Low-Complexity DNN-Based DoA Estimation Method for EHF and THF Cell-Free Massive MIMO

We study the problem of direction of arrival (DoA) estimation for cell-free massive MIMO (m-MIMO) systems operating over extremely high frequency (EHF) and terahertz (THF) bands, where the wireless channel can effectively be modeled by a line-of-sight path. For this model, a low-complexity deep neur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Vehicular Technology Conference pp. 1 - 7
Main Authors: Hosseini, Seyyed Saleh, Champagne, Benoit, Chang, Xiao-Wen
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2022
Subjects:
ISSN:2577-2465
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the problem of direction of arrival (DoA) estimation for cell-free massive MIMO (m-MIMO) systems operating over extremely high frequency (EHF) and terahertz (THF) bands, where the wireless channel can effectively be modeled by a line-of-sight path. For this model, a low-complexity deep neural network (DNN)-based method is proposed to estimate the DoA of a radio wave impinging on an access point (AP) equipped with an antenna array. To train the DNN, a special feature set is proposed obtained from the first superdiagonal entries of the spatial correlation matrix. This selection of features makes it possible to employ a DNN with only a few low-dimensional layers, which considerably speeds up training and processing. More importantly, it is shown that the trained DNN is robust against quantization noise in the array snapshot data. This property makes the centralized implementation of the proposed DNN-based method feasible, which is particularly well-suited for cell-free m-MIMO. Through extensive simulations, the new method is shown to achieve an estimation performance that nearly matches or exceeds that of classical bechmark methods, but with considerably reduced complexity.
AbstractList We study the problem of direction of arrival (DoA) estimation for cell-free massive MIMO (m-MIMO) systems operating over extremely high frequency (EHF) and terahertz (THF) bands, where the wireless channel can effectively be modeled by a line-of-sight path. For this model, a low-complexity deep neural network (DNN)-based method is proposed to estimate the DoA of a radio wave impinging on an access point (AP) equipped with an antenna array. To train the DNN, a special feature set is proposed obtained from the first superdiagonal entries of the spatial correlation matrix. This selection of features makes it possible to employ a DNN with only a few low-dimensional layers, which considerably speeds up training and processing. More importantly, it is shown that the trained DNN is robust against quantization noise in the array snapshot data. This property makes the centralized implementation of the proposed DNN-based method feasible, which is particularly well-suited for cell-free m-MIMO. Through extensive simulations, the new method is shown to achieve an estimation performance that nearly matches or exceeds that of classical bechmark methods, but with considerably reduced complexity.
Author Hosseini, Seyyed Saleh
Champagne, Benoit
Chang, Xiao-Wen
Author_xml – sequence: 1
  givenname: Seyyed Saleh
  surname: Hosseini
  fullname: Hosseini, Seyyed Saleh
  email: seyyed.hosseini@mail.mcgill.ca
  organization: McGill University,Dept. of Electrical & Computer Eng.,Montreal,Canada
– sequence: 2
  givenname: Benoit
  surname: Champagne
  fullname: Champagne, Benoit
  email: benoit.champagne@mcgill.ca
  organization: McGill University,Dept. of Electrical & Computer Eng.,Montreal,Canada
– sequence: 3
  givenname: Xiao-Wen
  surname: Chang
  fullname: Chang, Xiao-Wen
  email: chang@cs.mcgill.ca
  organization: McGill University,School of Computer Science,Montreal,Canada
BookMark eNo1kD1PwzAYhA0CCVr4BwzemFxsJ7brsaQNrdSPpcBYvalfi6A0ruII6L_HCJieO-l0Ot2AXLShRULuBR8Jwe3Dy7aQXEpWQtMok-Tox44E50KOtT0jA6G1ylWux-acXEtlDJO5VldkEOM7TzGh5TV5ndBl-GRFOBwb_Kr7E52u1-wRIjo6DRM6i319gL4OLV1h_xYc9aGjs3lJoXV0m1hg07CyQ6QriLH-SFysNjfk0kMT8faPQ_JczrbFnC03T4tismS1yPKejUGqzIG3lfcm89YACCO0R6nAVWjNPlPWV9btva90Lqx2CSBEyvK9gmxI7n57a0TcHbs0tjvt_l_IvgG9LVSB
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTC2022-Fall57202.2022.10012869
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665454687
9781665454681
EISSN 2577-2465
EndPage 7
ExternalDocumentID 10012869
Genre orig-research
GroupedDBID -~X
29I
6IE
6IH
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
RNS
VH1
ID FETCH-LOGICAL-i134t-8a253daf9bff73f97aa1716fe25adbe97c359fb9dcffb64196db64a113f90c5a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927580600175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:09:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i134t-8a253daf9bff73f97aa1716fe25adbe97c359fb9dcffb64196db64a113f90c5a3
PageCount 7
ParticipantIDs ieee_primary_10012869
PublicationCentury 2000
PublicationDate 2022-Sept.
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationTitle IEEE Vehicular Technology Conference
PublicationTitleAbbrev VTC57202
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
Score 1.8129467
Snippet We study the problem of direction of arrival (DoA) estimation for cell-free massive MIMO (m-MIMO) systems operating over extremely high frequency (EHF) and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cell-free massive MIMO
Direction-of-arrival estimation
DoA estimation
Estimation
LoS communications
neural network
Neural networks
Quantization (signal)
Training
Vehicular and wireless technologies
Wireless communication
Title A Low-Complexity DNN-Based DoA Estimation Method for EHF and THF Cell-Free Massive MIMO
URI https://ieeexplore.ieee.org/document/10012869
WOSCitedRecordID wos000927580600175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5uiOjFr4nf5CB4ytYmbdMc57YywdYdpu420nzAoLQyO8V_b5J9qAcPnhJCCOFN3rwheZ_nAeBGCrMziGCIcaZQEBmfYyLmlgnTasARyb3ciU3QLIsnEzZagdUdFkYp5ZLPVNtW3V--rMTCPpV1fPfxE7EGaFAaLcFam2PX9yO8A25XJJqd53EP20z1hBdFSLEDXWHcXg_xS0zFxZJk_5-zOACtb1QeHG3izSHYUuUR2PtBKHgMXrrwofpA1skt0WX9CftZhu5MpJKwX3XhwDj0EqsIUycdDc2dFQ6GCeSlhGNT9lRRoGSuFEzNtdochTC9Tx9b4CkZjHtDtJJOQDOfBDWKOQ6NnTXLtaZEM8q55cXRCodc5opRQUKmcyaF1nkUGDeUpuC-b_p6IuTkBDTLqlSnAIY6NGE89jT1ReApEec0lpLwSAmstZefgZa10fR1yY4xXZvn_I_2C7DrFsblaV2CZj1fqCuwLd7r2dv82q3pF4GQoD8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagII6Fq4gbD0hMbhPn9FjaRq1oQocA3SrHh1QpSlBJQfx7bJMWGBiYbFmWZT37-Vn2-74PgBvO1M5wGEGEEoFcX_kcYSHVTJhaA87h1MqM2ESQJOFkQsY1WN1gYYQQJvlMtHTV_OXzki30U1nbNh8_PlkHG1o6q4ZrrQ5e2_bxFritaTTbT2kX61z1iOa5F2ADu8K4tRzkl5yKiSbR3j_nsQ-a37g8OF5FnAOwJopDsPuDUvAIPHfgqHxH2s011WX1AXtJgu5UrOKwV3ZgX7n0F1oRxkY8GqpbK-wPIkgLDlNVdkWeo2guBIzVxVodhjAexg9N8Bj10-4A1eIJaGY7boVCij1laUkyKQNHkoBSzYwjBfYozwQJmOMRmRHOpMx8VzkiVwW1bdXXYh51jkGjKAtxAqAnPRXIQ0sGNnMtwcIsCDl3qC8YltLKTkFT22j68sWPMV2a5-yP9muwPUjj0XQ0TO7PwY5ZJJO1dQEa1XwhLsEme6tmr_Mrs76fDHyjiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=A+Low-Complexity+DNN-Based+DoA+Estimation+Method+for+EHF+and+THF+Cell-Free+Massive+MIMO&rft.au=Hosseini%2C+Seyyed+Saleh&rft.au=Champagne%2C+Benoit&rft.au=Chang%2C+Xiao-Wen&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FVTC2022-Fall57202.2022.10012869&rft.externalDocID=10012869