A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion

The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the ra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 International Conference on Machine Learning and Cybernetics Ročník 4; s. 1333 - 1338
Hlavní autoři: Juan Geng, Lai-Sheng Wang, Ai-Min Fu, Qi-Qing Song
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2012
Témata:
ISBN:1467314846, 9781467314848
ISSN:2160-133X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the rank function, and then using gradient projection method to minimize it. Our algorithm is named as Hyperbolic Tangent function Approximation algorithm (HTA). We report numerical results for solving randomly generated matrix completion problems and image reconstruction. The numerical results suggest that significant improvement be achieved by our algorithm when compared to the previous ones. Numerical results show that accuracy of HTA is higher than that of SVT and FPC, and the requisite number of sampling to recover a matrix is typically reduced. Meanwhile we can see the power of HTA algorithm for missing data estimate in images.
AbstractList The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the rank function, and then using gradient projection method to minimize it. Our algorithm is named as Hyperbolic Tangent function Approximation algorithm (HTA). We report numerical results for solving randomly generated matrix completion problems and image reconstruction. The numerical results suggest that significant improvement be achieved by our algorithm when compared to the previous ones. Numerical results show that accuracy of HTA is higher than that of SVT and FPC, and the requisite number of sampling to recover a matrix is typically reduced. Meanwhile we can see the power of HTA algorithm for missing data estimate in images.
Author Juan Geng
Ai-Min Fu
Qi-Qing Song
Lai-Sheng Wang
Author_xml – sequence: 1
  surname: Juan Geng
  fullname: Juan Geng
  email: hebeigengjuan@163.com
  organization: Coll. of Sci., China Agric. Univ., Beijing, China
– sequence: 2
  surname: Lai-Sheng Wang
  fullname: Lai-Sheng Wang
  email: Wanglaish@126.com
  organization: Coll. of Sci., China Agric. Univ., Beijing, China
– sequence: 3
  surname: Ai-Min Fu
  fullname: Ai-Min Fu
  organization: Coll. of Sci., China Agric. Univ., Beijing, China
– sequence: 4
  surname: Qi-Qing Song
  fullname: Qi-Qing Song
  organization: Coll. of Sci., Guilin Univ. of Technol., Guilin, China
BookMark eNpFUM1OAjEYrBETAXkBvfQFFvtt2217JBsFEowXTIwXUsq3UN1tSXdN5O1dI8a5TOYnc5gRGYQYkJBbYFMAZu6X5dOqnOYM8mnBpZFSX5CJURpEoTgIrcwlGf0JUQzIMIeCZcD56zWZtO0766GE0AaG5G1G2ybG7oA7mmz4oNVncJ2Pgdp6H5PvDg3d2rZPF6cjpm2svaNrG_YYuv9uFRNtbJf8F3WxOdb4496Qq8rWLU7OPCYvjw_rcpGtnufLcrbKPHChM8gNSrGteuKFdlLmzvYKKqUdgtVgDYJgbodV7zOHWlhZaKVyUYEUmo_J3e-uR8TNMfnGptPmfA3_BnovWNo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2012.6359558
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467314879
1467314870
9781467314862
1467314862
EndPage 1338
ExternalDocumentID 6359558
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i1348-129e54bf29e368c552cabf21f78ce1a81a9e140cdefabf0ce84a5687724f15483
IEDL.DBID RIE
ISBN 1467314846
9781467314848
ISSN 2160-133X
IngestDate Wed Aug 27 03:29:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1348-129e54bf29e368c552cabf21f78ce1a81a9e140cdefabf0ce84a5687724f15483
OpenAccessLink https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359558
PageCount 6
ParticipantIDs ieee_primary_6359558
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744891
ssj0000819444
Score 1.4972314
Snippet The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes...
SourceID ieee
SourceType Publisher
StartPage 1333
SubjectTerms Abstracts
Hyperbolic Tangent function Approximation
Image reconstruction
MATLAB
Nuclear norm minimization
Periodic structures
Smoothed rank function approximation
Title A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion
URI https://ieeexplore.ieee.org/document/6359558
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0g8eAJFYzf2YNHC213u7s9GiLBBAkHTIgXsrudKolQU8D4891ZCsTEi6d2Jk3a7LR587bzZgi5MyZkoCQPuExMwHWSBqmxEEglWAix0Ux5ofBADodqMklHNXK_08IAgC8-gzae-n_5WWHXuFXWEagiTdQBOZBSbrRau_0UB4VcVX1fvO2gjvtZrnEkwsBRsYnXdQnJHAPgYtvuqbLVVlATpp2n7vOgi1Vfcbu646_RKx55eo3_PfMxae0lfHS0A6cTUoPFKWlsZzjQ6pNuktcHupwXKMPKKM5vpwh0GCyqP96KcrZ6n1NEuoz2HWMtDbYRpmPtFVn7a13mS-fY7P-b-hp1QG-LvPQex91-UM1bCGYR445Mxikk3OTuwISySRJb7awol8pCpFWkU3B8zGaQO39oQbnYCuXyc54j82FnpL4oFnBOqDBYj81lakLgTEdKQ-JSSevIYQJciAvSxKWafm5aakyrVbr8231FjjAamyrZa1JflWu4IYf2azVblrf-PfgB88utEA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0gmugJFYzf7sGjhbb70e3REAnEQjhgQryQ3e1USYSaAsaf7-5SICZePLUzadJmp82bt503g9C9Uj4BEVGPRkx5VLLYi5UGLxKc-BAqSYQTCifRYCDG43hYQQ9bLQwAuOIzaNpT9y8_zfXKbpW1uFWRMrGH9hmlYbBWa213VAwYUlF2fnG2ATvqprmGAfc9Q8bGTtnFI2I4AOWbhk-lLTaSGj9u9dr9pG3rvsJmec9fw1cc9nRq_3vqY9TYifjwcAtPJ6gC81NU20xxwOVHXUevj3gxy60QK8V2gju2UGfDheXHW15Ml-8zbLEuxV3DWQtlGwnjkXSarN21JvfFM9vu_xu7KnWw3gZ66TyN2l2vnLjgTQNCDZ0MY2BUZeZAuNCMhVoaK8gioSGQIpAxGEamU8iM39cgTHS5MBk6zSz3IWeoOs_ncI4wV7Yim0ax8oESGQgJzCST2tBDBpTzC1S3SzX5XDfVmJSrdPm3-w4ddkf9ZJL0Bs9X6MhGZl0ze42qy2IFN-hAfy2ni-LWvRM_KGuwVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+smoothed+rank+function+algorithm+based+Hyperbolic+Tangent+function+for+matrix+completion&rft.au=Juan+Geng&rft.au=Lai-Sheng+Wang&rft.au=Ai-Min+Fu&rft.au=Qi-Qing+Song&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=9781467314848&rft.issn=2160-133X&rft.volume=4&rft.spage=1333&rft.epage=1338&rft_id=info:doi/10.1109%2FICMLC.2012.6359558&rft.externalDocID=6359558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon