A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion
The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the ra...
Uloženo v:
| Vydáno v: | 2012 International Conference on Machine Learning and Cybernetics Ročník 4; s. 1333 - 1338 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2012
|
| Témata: | |
| ISBN: | 1467314846, 9781467314848 |
| ISSN: | 2160-133X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the rank function, and then using gradient projection method to minimize it. Our algorithm is named as Hyperbolic Tangent function Approximation algorithm (HTA). We report numerical results for solving randomly generated matrix completion problems and image reconstruction. The numerical results suggest that significant improvement be achieved by our algorithm when compared to the previous ones. Numerical results show that accuracy of HTA is higher than that of SVT and FPC, and the requisite number of sampling to recover a matrix is typically reduced. Meanwhile we can see the power of HTA algorithm for missing data estimate in images. |
|---|---|
| AbstractList | The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function-Hyperbolic Tangent function to approximate the rank function, and then using gradient projection method to minimize it. Our algorithm is named as Hyperbolic Tangent function Approximation algorithm (HTA). We report numerical results for solving randomly generated matrix completion problems and image reconstruction. The numerical results suggest that significant improvement be achieved by our algorithm when compared to the previous ones. Numerical results show that accuracy of HTA is higher than that of SVT and FPC, and the requisite number of sampling to recover a matrix is typically reduced. Meanwhile we can see the power of HTA algorithm for missing data estimate in images. |
| Author | Juan Geng Ai-Min Fu Qi-Qing Song Lai-Sheng Wang |
| Author_xml | – sequence: 1 surname: Juan Geng fullname: Juan Geng email: hebeigengjuan@163.com organization: Coll. of Sci., China Agric. Univ., Beijing, China – sequence: 2 surname: Lai-Sheng Wang fullname: Lai-Sheng Wang email: Wanglaish@126.com organization: Coll. of Sci., China Agric. Univ., Beijing, China – sequence: 3 surname: Ai-Min Fu fullname: Ai-Min Fu organization: Coll. of Sci., China Agric. Univ., Beijing, China – sequence: 4 surname: Qi-Qing Song fullname: Qi-Qing Song organization: Coll. of Sci., Guilin Univ. of Technol., Guilin, China |
| BookMark | eNpFUM1OAjEYrBETAXkBvfQFFvtt2217JBsFEowXTIwXUsq3UN1tSXdN5O1dI8a5TOYnc5gRGYQYkJBbYFMAZu6X5dOqnOYM8mnBpZFSX5CJURpEoTgIrcwlGf0JUQzIMIeCZcD56zWZtO0766GE0AaG5G1G2ybG7oA7mmz4oNVncJ2Pgdp6H5PvDg3d2rZPF6cjpm2svaNrG_YYuv9uFRNtbJf8F3WxOdb4496Qq8rWLU7OPCYvjw_rcpGtnufLcrbKPHChM8gNSrGteuKFdlLmzvYKKqUdgtVgDYJgbodV7zOHWlhZaKVyUYEUmo_J3e-uR8TNMfnGptPmfA3_BnovWNo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2012.6359558 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781467314879 1467314870 9781467314862 1467314862 |
| EndPage | 1338 |
| ExternalDocumentID | 6359558 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i1348-129e54bf29e368c552cabf21f78ce1a81a9e140cdefabf0ce84a5687724f15483 |
| IEDL.DBID | RIE |
| ISBN | 1467314846 9781467314848 |
| ISSN | 2160-133X |
| IngestDate | Wed Aug 27 03:29:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1348-129e54bf29e368c552cabf21f78ce1a81a9e140cdefabf0ce84a5687724f15483 |
| OpenAccessLink | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359558 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6359558 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-July |
| PublicationDateYYYYMMDD | 2012-07-01 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 International Conference on Machine Learning and Cybernetics |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744891 ssj0000819444 |
| Score | 1.4972314 |
| Snippet | The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1333 |
| SubjectTerms | Abstracts Hyperbolic Tangent function Approximation Image reconstruction MATLAB Nuclear norm minimization Periodic structures Smoothed rank function approximation |
| Title | A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion |
| URI | https://ieeexplore.ieee.org/document/6359558 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0g8eAJFYzf2YNHC213u7s9GiLBBAkHTIgXsrudKolQU8D4891ZCsTEi6d2Jk3a7LR587bzZgi5MyZkoCQPuExMwHWSBqmxEEglWAix0Ux5ofBADodqMklHNXK_08IAgC8-gzae-n_5WWHXuFXWEagiTdQBOZBSbrRau_0UB4VcVX1fvO2gjvtZrnEkwsBRsYnXdQnJHAPgYtvuqbLVVlATpp2n7vOgi1Vfcbu646_RKx55eo3_PfMxae0lfHS0A6cTUoPFKWlsZzjQ6pNuktcHupwXKMPKKM5vpwh0GCyqP96KcrZ6n1NEuoz2HWMtDbYRpmPtFVn7a13mS-fY7P-b-hp1QG-LvPQex91-UM1bCGYR445Mxikk3OTuwISySRJb7awol8pCpFWkU3B8zGaQO39oQbnYCuXyc54j82FnpL4oFnBOqDBYj81lakLgTEdKQ-JSSevIYQJciAvSxKWafm5aakyrVbr8231FjjAamyrZa1JflWu4IYf2azVblrf-PfgB88utEA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0gmugJFYzf7sGjhbb70e3REAnEQjhgQryQ3e1USYSaAsaf7-5SICZePLUzadJmp82bt503g9C9Uj4BEVGPRkx5VLLYi5UGLxKc-BAqSYQTCifRYCDG43hYQQ9bLQwAuOIzaNpT9y8_zfXKbpW1uFWRMrGH9hmlYbBWa213VAwYUlF2fnG2ATvqprmGAfc9Q8bGTtnFI2I4AOWbhk-lLTaSGj9u9dr9pG3rvsJmec9fw1cc9nRq_3vqY9TYifjwcAtPJ6gC81NU20xxwOVHXUevj3gxy60QK8V2gju2UGfDheXHW15Ml-8zbLEuxV3DWQtlGwnjkXSarN21JvfFM9vu_xu7KnWw3gZ66TyN2l2vnLjgTQNCDZ0MY2BUZeZAuNCMhVoaK8gioSGQIpAxGEamU8iM39cgTHS5MBk6zSz3IWeoOs_ncI4wV7Yim0ax8oESGQgJzCST2tBDBpTzC1S3SzX5XDfVmJSrdPm3-w4ddkf9ZJL0Bs9X6MhGZl0ze42qy2IFN-hAfy2ni-LWvRM_KGuwVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+smoothed+rank+function+algorithm+based+Hyperbolic+Tangent+function+for+matrix+completion&rft.au=Juan+Geng&rft.au=Lai-Sheng+Wang&rft.au=Ai-Min+Fu&rft.au=Qi-Qing+Song&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=9781467314848&rft.issn=2160-133X&rft.volume=4&rft.spage=1333&rft.epage=1338&rft_id=info:doi/10.1109%2FICMLC.2012.6359558&rft.externalDocID=6359558 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |

