Continuous-time online distributed constrained optimization via unbalanced digraphs

In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Control and Automation (Print) s. 807 - 813
Hlavní autoři: Lu, Kaihong, Xu, Hang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.06.2022
Témata:
ISSN:1948-3457
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its own cost function and the convex set, and cost function in the future is not available. To address this problem, we propose a modified online distributed "projection+gradient" algorithm, which involves each agent minimizing its own cost function while exchanging local state information with others via an unbalanced digraph. Performance of the algorithm is measured by dynamic regrets. Under mild assumptions on the graph, we prove that if the rate of a minimizer's variation is within a certain range, then regrets, as well as the violation of constraint, grow sublinearly. A simulation is presented to demonstrate the effectiveness of our theoretical results.
AbstractList In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its own cost function and the convex set, and cost function in the future is not available. To address this problem, we propose a modified online distributed "projection+gradient" algorithm, which involves each agent minimizing its own cost function while exchanging local state information with others via an unbalanced digraph. Performance of the algorithm is measured by dynamic regrets. Under mild assumptions on the graph, we prove that if the rate of a minimizer's variation is within a certain range, then regrets, as well as the violation of constraint, grow sublinearly. A simulation is presented to demonstrate the effectiveness of our theoretical results.
Author Xu, Hang
Lu, Kaihong
Author_xml – sequence: 1
  givenname: Kaihong
  surname: Lu
  fullname: Lu, Kaihong
  email: khong_lu@163.com
  organization: Jiangsu University,School of Electrical and Information Engineering,Zhenjiang,China,212013
– sequence: 2
  givenname: Hang
  surname: Xu
  fullname: Xu, Hang
  email: xhzs9497@163.com
  organization: Jiangsu University,School of Electrical and Information Engineering,Zhenjiang,China,212013
BookMark eNotkM1KxDAcxKMouK59AkHyAl3zz0eTHpfix8KCB_W8JE2ikW5SmlTQp7fgnobfzDCHuUYXMUWH0B2QDQBp73ddtxVcUr6hhNJNqxi0Qp6hqpUKmkbwhSicoxW0XNWMC3mFqpy_CCFAlGgIWaHXLsUS4pzmXJdwdDjFIUSHbchlCmYuzuI-xQX0YlucxqUVfnUJKeLvoPEcjR507JfMho9Jj5_5Bl16PWRXnXSN3h8f3rrnev_ytOu2-zoAY6V2Vmtre8YkB9mb3lEJjVfSWWm9kcpzYRZfKO61JMIKwS3lxjeOUA5g2Rrd_u8G59xhnMJRTz-H0w3sD9NcVlU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCA54724.2022.9831957
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665495721
1665495723
EISSN 1948-3457
EndPage 813
ExternalDocumentID 9831957
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i133t-edaaddc337417cbce2716f87ed7dfb78f45b7cb584fa705d554d24bf6e02411d3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300401300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-edaaddc337417cbce2716f87ed7dfb78f45b7cb584fa705d554d24bf6e02411d3
PageCount 7
ParticipantIDs ieee_primary_9831957
PublicationCentury 2000
PublicationDate 2022-June-27
PublicationDateYYYYMMDD 2022-06-27
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-27
  day: 27
PublicationDecade 2020
PublicationTitle IEEE International Conference on Control and Automation (Print)
PublicationTitleAbbrev ICCA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085600
Score 1.8057717
Snippet In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is...
SourceID ieee
SourceType Publisher
StartPage 807
SubjectTerms Automation
Cost function
Heuristic algorithms
Multi-agent systems
Trajectory
Title Continuous-time online distributed constrained optimization via unbalanced digraphs
URI https://ieeexplore.ieee.org/document/9831957
WOSCitedRecordID wos001300401300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlqxvtiDR9PuO5ujFIuClIIPeiubZBb24Fbabn-_M-nSKnjxFhKWQLLkm9f3DcBdEpnUphEKjHUsCG-tUJnWQmKufcUZRFdt8fEiJ5NsNlPTFtzvuDCI6IrPcMBDl8u3C1NzqGyoMvphEtmGtpTplqu1j6eQ7UDg3ZCAA18Nn0ejhySWIUdOwnDQfPyri4oDkfHx_7Y_gd6ejedNdzhzCi2szuDoh5BgF15ZZKqsanLjBXeL97YCGJ5lWVzuaIXWM2wJckMIGi_oofhsGJjepsy9utJc42hozZZOxHrVg_fx49voSTTtEkRJjuZaoM3psTJRREaCNNpgSL5QkUm00hZaZkWcaJoni6PIpZ9YMiRsGOsiRcLpILDROXSqRYUX4KXSGJUUfpI7vbdcaa10mnGS0pogkH3o8vHMv7aKGPPmZC7_nr6CQ74BLrAK5TV01ssab-DAbNblannrrvEbw6Ogjw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgXH2B8uwePFvbV7fZoiAQiEhLRcCPbdjbZA4sBlt_vdNmAJl68NW02adpNv3l93wA88kBHJgqQYahCRnhrmIyVYgIT5UqbQSyrLT4HYjiMJxM5qsHTlguDiGXxGbbssMzlm7kubKisLWP6YbjYg30ehr67YWvtIipkPRB8VzRgz5XtfqfzzEPh29iJ77eqz3_1USlhpHvyvw2cQnPHx3NGW6Q5gxrm53D8Q0qwAe9WZirLC3Lkme0X72wkMBxjhXFtTys0jra2oG0JQeM5PRWzioPprLPEKXJlqxw1rZmslLFeNuGj-zLu9FjVMIFl5GquGJqEnisdBGQmCK00-uQNpbFAI0yqRJyGXNE82RxpIlxuyJQwfqjSCAmpPc8EF1DP5zleghMJrSVPXZ6Uim-JVEqqKLZpSqM9T1xBwx7P9GujiTGtTub67-kHOOyN3wbTQX_4egNH9jZsuZUvbqG-WhR4Bwd6vcqWi_vySr8BSb2j1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Control+and+Automation+%28Print%29&rft.atitle=Continuous-time+online+distributed+constrained+optimization+via+unbalanced+digraphs&rft.au=Lu%2C+Kaihong&rft.au=Xu%2C+Hang&rft.date=2022-06-27&rft.pub=IEEE&rft.eissn=1948-3457&rft.spage=807&rft.epage=813&rft_id=info:doi/10.1109%2FICCA54724.2022.9831957&rft.externalDocID=9831957