Continuous-time online distributed constrained optimization via unbalanced digraphs
In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its...
Uloženo v:
| Vydáno v: | IEEE International Conference on Control and Automation (Print) s. 807 - 813 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.06.2022
|
| Témata: | |
| ISSN: | 1948-3457 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its own cost function and the convex set, and cost function in the future is not available. To address this problem, we propose a modified online distributed "projection+gradient" algorithm, which involves each agent minimizing its own cost function while exchanging local state information with others via an unbalanced digraph. Performance of the algorithm is measured by dynamic regrets. Under mild assumptions on the graph, we prove that if the rate of a minimizer's variation is within a certain range, then regrets, as well as the violation of constraint, grow sublinearly. A simulation is presented to demonstrate the effectiveness of our theoretical results. |
|---|---|
| AbstractList | In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is to cooperatively minimize the sum of time-varying cost functions subject to a convex set at each time. Each agent can only have access to its own cost function and the convex set, and cost function in the future is not available. To address this problem, we propose a modified online distributed "projection+gradient" algorithm, which involves each agent minimizing its own cost function while exchanging local state information with others via an unbalanced digraph. Performance of the algorithm is measured by dynamic regrets. Under mild assumptions on the graph, we prove that if the rate of a minimizer's variation is within a certain range, then regrets, as well as the violation of constraint, grow sublinearly. A simulation is presented to demonstrate the effectiveness of our theoretical results. |
| Author | Xu, Hang Lu, Kaihong |
| Author_xml | – sequence: 1 givenname: Kaihong surname: Lu fullname: Lu, Kaihong email: khong_lu@163.com organization: Jiangsu University,School of Electrical and Information Engineering,Zhenjiang,China,212013 – sequence: 2 givenname: Hang surname: Xu fullname: Xu, Hang email: xhzs9497@163.com organization: Jiangsu University,School of Electrical and Information Engineering,Zhenjiang,China,212013 |
| BookMark | eNotkM1KxDAcxKMouK59AkHyAl3zz0eTHpfix8KCB_W8JE2ikW5SmlTQp7fgnobfzDCHuUYXMUWH0B2QDQBp73ddtxVcUr6hhNJNqxi0Qp6hqpUKmkbwhSicoxW0XNWMC3mFqpy_CCFAlGgIWaHXLsUS4pzmXJdwdDjFIUSHbchlCmYuzuI-xQX0YlucxqUVfnUJKeLvoPEcjR507JfMho9Jj5_5Bl16PWRXnXSN3h8f3rrnev_ytOu2-zoAY6V2Vmtre8YkB9mb3lEJjVfSWWm9kcpzYRZfKO61JMIKwS3lxjeOUA5g2Rrd_u8G59xhnMJRTz-H0w3sD9NcVlU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCA54724.2022.9831957 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665495721 1665495723 |
| EISSN | 1948-3457 |
| EndPage | 813 |
| ExternalDocumentID | 9831957 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i133t-edaaddc337417cbce2716f87ed7dfb78f45b7cb584fa705d554d24bf6e02411d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300401300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-edaaddc337417cbce2716f87ed7dfb78f45b7cb584fa705d554d24bf6e02411d3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9831957 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June-27 |
| PublicationDateYYYYMMDD | 2022-06-27 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Control and Automation (Print) |
| PublicationTitleAbbrev | ICCA |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001085600 |
| Score | 1.8058738 |
| Snippet | In this paper, online distributed constrained optimization is investigated by employing a continuous-time multi-agent systems. The objective of the agents is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 807 |
| SubjectTerms | Automation Cost function Heuristic algorithms Multi-agent systems Trajectory |
| Title | Continuous-time online distributed constrained optimization via unbalanced digraphs |
| URI | https://ieeexplore.ieee.org/document/9831957 |
| WOSCitedRecordID | wos001300401300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwED2S0KFd-pGUfqOhY5XYshTZYwkNLZQQaAvZgqWTwEOdksT5_T05JmmhSzchIwyS0b0733sP4N7HVhuvEh4hGi6NUtyYKONGaxRZMOFIaqLwq55M0tksm7bgYceFcc7VzWeuH4b1v3xc2CqUygZZSh-M0m1oaz3ccrX29RTCDhS8GxJwHGWDl9HoUUktQuVEiH6z-JeLSh1Exsf_e_0J9PZsPDbdxZlTaLnyDI5-CAl24S2ITBVlRWk8D27xbCuAwTDI4gZHK4fMBiQYDCFovKCL4rNhYLJNkbOqNKHH0dIzLGoR61UPPsZP76Nn3tgl8IISzTV3mNNlZZOEQIK2xjpBuZBPtUON3ujUS2VonhCHz3WkkIAECmn80FGcjmNMzqFTLkp3AYwWJjlGaHSOUvokk8JJyn2EsrFU0l9CN2zP_GuriDFvdubq7-lrOAwnEBqshL6BznpZuVs4sJt1sVre1cf4DVwBoUU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagXf0zxtz14NFubJmY9ynBsOMfACbuNJi-BHuxkW_f3-9KVTcGLt5ASKEnJ-97r-74P4MFFRmknYxYiaia0lEzrMGFaKeSJN-GIS6LwQA2H7ckkGdXgccOFsdaWzWe26Yflv3ycmcKXylpJmz4YqXZgVwrBwzVba1tRIfRA4buiAUdh0up3Os9SKO5rJ5w3q-W_fFTKMNI9-t8LHMPZlo8XjDaR5gRqNj-Fwx9Sgg149zJTWV5QIs-8X3ywlsAI0Avjek8ri4HxWNBbQtB4RlfFZ8XBDFZZGhS59l2Ohp5hVspYL87go_sy7vRYZZjAMko1l8xiSteViWOCCcpoYzllQ66tLCp0WrWdkJrmCXO4VIUSCUogF9o9WYrUUYTxOdTzWW4vIKCFcYohapWiEC5OBLeCsh8uTSSkcJfQ8Nsz_VprYkyrnbn6e_oe9nvjt8F00B--XsOBPw3fbsXVDdSX88Lewp5ZLbPF_K480m_sGKSM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Control+and+Automation+%28Print%29&rft.atitle=Continuous-time+online+distributed+constrained+optimization+via+unbalanced+digraphs&rft.au=Lu%2C+Kaihong&rft.au=Xu%2C+Hang&rft.date=2022-06-27&rft.pub=IEEE&rft.eissn=1948-3457&rft.spage=807&rft.epage=813&rft_id=info:doi/10.1109%2FICCA54724.2022.9831957&rft.externalDocID=9831957 |