Misinformation in Social Media Platforms and Web Articles: a Dataset to Infer User Stance

Social media is filled with news articles, interesting stories and entertainment news. It is a given that along with most of these legitimate stories and articles some of them may also be misinformation. The problem of detecting misinformation and identifying whether an article title misleads reader...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE 16th International Conference on Semantic Computing (ICSC) s. 269 - 273
Hlavní autoři: Abeysinghe, Bhashithe, Vulupala, Gyandeep Reddy, Sunderraman, Rajshekhar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Social media is filled with news articles, interesting stories and entertainment news. It is a given that along with most of these legitimate stories and articles some of them may also be misinformation. The problem of detecting misinformation and identifying whether an article title misleads readers has been studied. However, work related to user's stance of a shared article has not been explored much. This paper tries to fill that gap by introducing a public dataset which includes users text contribution, article title, article content and a link to the article.
DOI:10.1109/ICSC52841.2022.00051