An improved Estimation of Distribution Algorithm for Solving Constrained Mixed-Integer Nonlinear Programming Problems

In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE Congress on Evolutionary Computation (CEC) s. 01 - 08
Hlavní autori: Molina Perez, Daniel, Alfredo Portilla-Flores, Edgar, Mezura-Montes, Efren, Vega-Alvarado, Eduardo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 18.07.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of an Estimation of Distribution Algorithm (EDA) is developed, where two new op-erations are proposed. The first one establishes a link between the learning-based histogram model and the \varepsilon -constrained method. Here, the constraint violation level of the \varepsilon -constrained method is used to explore the smaller discontinuous parts and form a better statistical model. The second operation is the hybridization of the EDA with a mutation operator to generate offspring from both the global distribution information and the parent information. A benchmark is used to test the performance of the improved proposal. The results indicated that the proposed approach shows a better performance against other tested EAs. This new proposal solves to a great extent the influence of the larger discontinuous feasible parts, and improve the local refinement of the real variables.
DOI:10.1109/CEC55065.2022.9870338