An improved Estimation of Distribution Algorithm for Solving Constrained Mixed-Integer Nonlinear Programming Problems

In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE Congress on Evolutionary Computation (CEC) s. 01 - 08
Hlavní autoři: Molina Perez, Daniel, Alfredo Portilla-Flores, Edgar, Mezura-Montes, Efren, Vega-Alvarado, Eduardo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 18.07.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of an Estimation of Distribution Algorithm (EDA) is developed, where two new op-erations are proposed. The first one establishes a link between the learning-based histogram model and the \varepsilon -constrained method. Here, the constraint violation level of the \varepsilon -constrained method is used to explore the smaller discontinuous parts and form a better statistical model. The second operation is the hybridization of the EDA with a mutation operator to generate offspring from both the global distribution information and the parent information. A benchmark is used to test the performance of the improved proposal. The results indicated that the proposed approach shows a better performance against other tested EAs. This new proposal solves to a great extent the influence of the larger discontinuous feasible parts, and improve the local refinement of the real variables.
AbstractList In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of an Estimation of Distribution Algorithm (EDA) is developed, where two new op-erations are proposed. The first one establishes a link between the learning-based histogram model and the \varepsilon -constrained method. Here, the constraint violation level of the \varepsilon -constrained method is used to explore the smaller discontinuous parts and form a better statistical model. The second operation is the hybridization of the EDA with a mutation operator to generate offspring from both the global distribution information and the parent information. A benchmark is used to test the performance of the improved proposal. The results indicated that the proposed approach shows a better performance against other tested EAs. This new proposal solves to a great extent the influence of the larger discontinuous feasible parts, and improve the local refinement of the real variables.
Author Alfredo Portilla-Flores, Edgar
Mezura-Montes, Efren
Molina Perez, Daniel
Vega-Alvarado, Eduardo
Author_xml – sequence: 1
  givenname: Daniel
  surname: Molina Perez
  fullname: Molina Perez, Daniel
  email: dmolinap1800@alumno.ipn.mx
  organization: Instituto Politécnico Nacional,CIDETEC,Ciudad de México,México
– sequence: 2
  givenname: Edgar
  surname: Alfredo Portilla-Flores
  fullname: Alfredo Portilla-Flores, Edgar
  email: aportilla@ipn.mx
  organization: Instituto Politécnico Nacional,UPIIT,Tlaxcala,México
– sequence: 3
  givenname: Efren
  surname: Mezura-Montes
  fullname: Mezura-Montes, Efren
  email: emezura@uv.mx
  organization: Artificial Intelligence Research Center University of Veracruz,Veracruz,México
– sequence: 4
  givenname: Eduardo
  surname: Vega-Alvarado
  fullname: Vega-Alvarado, Eduardo
  email: evega@ipn.mx
  organization: Instituto Politécnico Nacional,CIDETEC,Ciudad de México,México
BookMark eNotkNtOwzAQRI0EElD6BQjJP5DgS3zJYxVKqVQuEvBcOfE6GCV25aQV_D0B-rQ7o7MjzV6i0xADIHRDSU4pKW-rZSUEkSJnhLG81Ipwrk_QvFSaSikKqYhW52g-DJ-EEKYZKbi8QPtFwL7fpXgAi5fD6Hsz-hhwdPjOD2Py9f5PL7o2Jj9-9NjFhF9jd_ChxVUME2N8mI4f_RfYbB1GaCHhpxi6yTYJv6TYJtP3v_y01x30wxU6c6YbYH6cM_R-v3yrHrLN82pdLTaZp5yPmbVNoaC0XFrhoGCMwdTG0YJp53jdCFYL56yjrHaslgVtlFC6IYZYo63TfIau_3M9AGx3aWqXvrfH5_AfGTBgCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC55065.2022.9870338
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665467087
1665467088
EndPage 08
ExternalDocumentID 9870338
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-ddc47e9d36d5fe4222e781f1428ff3bc52b5ffdf12bf2b641c7578c0a0da8df83
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859282000121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:19:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-ddc47e9d36d5fe4222e781f1428ff3bc52b5ffdf12bf2b641c7578c0a0da8df83
PageCount 8
ParticipantIDs ieee_primary_9870338
PublicationCentury 2000
PublicationDate 2022-July-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-18
  day: 18
PublicationDecade 2020
PublicationTitle 2022 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002820436
Score 1.8367639
Snippet In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes....
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Benchmark testing
Estimation
estimation of distribution algorithm
evolution-ary algorithms
Evolutionary computation
Histograms
integer restriction handling
mixed integer non-linear programming
Programming
Proposals
Title An improved Estimation of Distribution Algorithm for Solving Constrained Mixed-Integer Nonlinear Programming Problems
URI https://ieeexplore.ieee.org/document/9870338
WOSCitedRecordID wos000859282000121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA3b8OBJZRN_k4NHuzXpj7THMTc86BiosNtok--bha0d3Sb--eZry0Tw4q2UhkDCR773mvceY_fgCwESpKNVmjh-Kjxbc4iOjlAHSqHydCUUflbTaTSfx7MWezhoYQCgunwGfXqs_uWbQu-JKhtYfOxaSNVmbaXCWqt14FMsdCA39UakI9x4MBqPbPsdBhYEStlvxv4KUanOkMnJ_2Y_Zb0fMR6fHY6ZM9aCvMv2w5xnFR8Aho9tmdYKRF4gfyQr3CbFig9Xy8LC_481t80pfy1WxB9wSumssiHs4JfsC4xDxOASSj6tnTOSkqaki1tr-n5Wp85se-x9Mn4bPTlNgoKTWey5c4zRvoLYeKEJEIjtARUJJJc1RC_VgUwDRINCpijT0Bea7O21m7gmiQxG3jnr5EUOF4wLiyyMjhX6EPjKwjQTYmwrzNh-UEY6uWRdWrLFpjbJWDSrdfX362t2TLtCJKmIblhnV-7hlh3pz122Le-qnf0GIlaoNg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvqksonf5sFHuy3pR9rHMScTtzJwwt5Gm9zMwtZK14k_39y2TARffCulIZBwyT2nOecQcg8OY8CBW1LEkeXEzDY1p7UlfS1dIbSwZSkUHosw9OfzYNogDzstDACUl8-gg4_lv3yVyS1SZV2Dj3sGUu2RfUzOqtVaO0bFgAf0U69lOqwXdAfDgWnAPdfAQM479ehfMSrlKfJ0_L_5T0j7R45Hp7uD5pQ0IG2RbT-lSckIgKJDU6iVBpFmmj6iGW6dY0X7q2WWJ8X7mpr2lL5mK2QQKOZ0lukQZvAk-QJlITW4hJyGlXdGlOOUeHVrjd9Pq9yZTZu8PQ1ng5FVZyhYiUGfhaWUdAQEyvaUqwH5HhA-0-izprUdS5fHrtZKMx5rHnsOk2hwL3tRT0W-0r59RppplsI5ocxgCyUDoR1wHWGAmvJ0YGpMmY6Q-zK6IC1cssVHZZOxqFfr8u_Xd-RwNJuMF-Pn8OWKHOEOIWXK_GvSLPIt3JAD-Vkkm_y23OVvEIKrfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=An+improved+Estimation+of+Distribution+Algorithm+for+Solving+Constrained+Mixed-Integer+Nonlinear+Programming+Problems&rft.au=Molina+Perez%2C+Daniel&rft.au=Alfredo+Portilla-Flores%2C+Edgar&rft.au=Mezura-Montes%2C+Efren&rft.au=Vega-Alvarado%2C+Eduardo&rft.date=2022-07-18&rft.pub=IEEE&rft.spage=01&rft.epage=08&rft_id=info:doi/10.1109%2FCEC55065.2022.9870338&rft.externalDocID=9870338