Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget - a Bandgap Case Study

Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Hardware/Software Codesign and System Synthesis (Online) pp. 21 - 24
Main Authors: Bloem, Roderick, Larrauri, Alberto, Lengfeldner, Roland, Mateis, Cristinel, Nickovic, Dejan, Ziegler, Bjorn
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2022
Subjects:
ISSN:2832-6474
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.
AbstractList Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.
Author Mateis, Cristinel
Ziegler, Bjorn
Nickovic, Dejan
Bloem, Roderick
Larrauri, Alberto
Lengfeldner, Roland
Author_xml – sequence: 1
  givenname: Roderick
  surname: Bloem
  fullname: Bloem, Roderick
  organization: Graz University of Technology,Austria
– sequence: 2
  givenname: Alberto
  surname: Larrauri
  fullname: Larrauri, Alberto
  organization: Graz University of Technology,Austria
– sequence: 3
  givenname: Roland
  surname: Lengfeldner
  fullname: Lengfeldner, Roland
  organization: Graz University of Technology,Austria
– sequence: 4
  givenname: Cristinel
  surname: Mateis
  fullname: Mateis, Cristinel
  organization: Graz University of Technology,Austria
– sequence: 5
  givenname: Dejan
  surname: Nickovic
  fullname: Nickovic, Dejan
  organization: Graz University of Technology,Austria
– sequence: 6
  givenname: Bjorn
  surname: Ziegler
  fullname: Ziegler, Bjorn
  organization: Graz University of Technology,Austria
BookMark eNotkE9PwjAcQKvRREQ-gZdfvA_7b-3qDQYqCQaT4Zm09LdlBjrSbge-PSR6epeXd3iP5C50AQl5YXTKGDWv5WaxrLJVVVV5Tmk-5ZTzKaWUqRsyMbpgSuVScyPlLRnxQvBMSS0fyCSl36smOJXUFCPSrIIfUh_P8G1PGN-gGmLsGtsjfHUeDwnqLsIWU9-GBmbBHroGFpjaJiQYgscI6_bY9uhhPvgGe8jAwtwG39gTlDYhVP3gz0_kvraHhJN_jsnP-3JbfmbrzceqnK2zlgnRZ054K2vhuFaKGqO93iuH3ihXaKfYXmlfOOcoxzqvla2p3VOqBF4foNdWiDF5_uu2iLg7xfZo43lnjBRMcHEBPxJb3w
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CODES-ISSS55005.2022.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665472944
1665472944
EISSN 2832-6474
EndPage 24
ExternalDocumentID 9943132
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-b3da4f3b27660997d7c6bed96b87b61c67d8bbb02ef5f6af0ac0063e500ed7a33
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891771000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:27 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-b3da4f3b27660997d7c6bed96b87b61c67d8bbb02ef5f6af0ac0063e500ed7a33
PageCount 4
ParticipantIDs ieee_primary_9943132
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle International Conference on Hardware/Software Codesign and System Synthesis (Online)
PublicationTitleAbbrev CODES-ISSS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204098
Score 1.8306054
Snippet Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog...
SourceID ieee
SourceType Publisher
StartPage 21
SubjectTerms analog design
Artificial neural networks
Bayes methods
Computational modeling
Integrated circuit modeling
machine learning
Photonic band gap
surrogate model
testing
Transistors
Voltage
Title Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget - a Bandgap Case Study
URI https://ieeexplore.ieee.org/document/9943132
WOSCitedRecordID wos000891771000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF3a4sGTSit-MwePrm036W7WY79QkFpIld7KbnYTCpKUNBH6791JQ_XgxVNCTmEmy7yZzHuPkHufaR-RBnUXQX2H8KniUlAmhDIy9gem0i34eBWzWbBcynmDPBy4MNbaavnMPuJt9S_fZFGJo7KulD4qDTZJUwi-52od5ikec5-jDGpd0X5Pdkdv40lIX8IwdCi8N3C9IKvEOdHa_JeTSlVIpif_e4VT0vlh5MH8UGvOSMOmbZLUvhs7mKuNzZ8gLPM8w7kYoMXZ5xYcIoUF6mikCaD8SJbAuFrZ2AKSx3Ko-U0wLE1iC6CgYKhSk6gNjFx9A1wz3HXI-3SyGD3T2jiBrl3LWVDtGeXHnmaCc2TGGhFxbY3kOhCa9yMuTKC17jEbD2Ku4p6KEKpYFyZrhPK8c9JKs9ReEHBoQ-OZZQ4a-ErZINBSx4xF1vWFLqmXpI1BWm322hirOj5Xfz--JseYhf0y3A1pFXlpb8lR9FWst_ldldBvrDWgeg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKQYIJUIv45gZGTIPjxDFjv9SKUiqloG6VHTtRJZRWaYLUf4-dRoWBhSlRpugu1r273HsPoXtKJLVIA5sLw9QgfCx8zjBhTCgeU0-VugUfIzYeB7MZn9TQw44Lo7Uul8_0o70t_-WrZVTYUVmLc2qVBvfQvkcpcbZsrd1ExSXmg-RBpSz65PBW563bC_EwDEODwx3PdIOklOe05ua_vFTKUtI__t9LnKDmDycPJrtqc4pqOm2gpHLe2MBErHT2DGGRZUs7GQNrcva5BoNJYWqVNNIErADJMoFuubSxBksfy6BiOEG7UInOAYOAtkhVIlbQMRUO7KLhpone-71pZ4Ar6wS8ME1njqWrBI1dSZjvW26sYpEvteK-DJj0nyKfqUBK6RAde7EvYkdEFqxoEyatmHDdM1RPl6k-R2DwhrSnlhhwQIXQQSC5jAmJtOkMTVovUMMGab7aqmPMq_hc_v34Dh0Opq-j-Wg4frlCRzYj29W4a1TPs0LfoIPoK1-ss9syud80A6PB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Hardware%2FSoftware+Codesign+and+System+Synthesis+%28Online%29&rft.atitle=Industry+Paper%3A+Surrogate+Models+for+Testing+Analog+Designs+under+Limited+Budget+-+a+Bandgap+Case+Study&rft.au=Bloem%2C+Roderick&rft.au=Larrauri%2C+Alberto&rft.au=Lengfeldner%2C+Roland&rft.au=Mateis%2C+Cristinel&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2832-6474&rft.spage=21&rft.epage=24&rft_id=info:doi/10.1109%2FCODES-ISSS55005.2022.00016&rft.externalDocID=9943132