OntoJob: Automated Ontology Learning from Labor Market Data

Due to the rapidly changing labor market and the consequently widening information gap between the labor market and education, there is a need for methods that can tackle, or at least ease, the construction of labor market ontologies. The current study set out to examine the viability of Ontology Le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE 16th International Conference on Semantic Computing (ICSC) s. 195 - 200
Hlavní autoři: Vrolijk, Jarno, Mol, Stefan T., Weber, Christian, Tavakoli, Mohammadreza, Kismihok, Gabor, Pelucchi, Mauro
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the rapidly changing labor market and the consequently widening information gap between the labor market and education, there is a need for methods that can tackle, or at least ease, the construction of labor market ontologies. The current study set out to examine the viability of Ontology Learning (OL) methods for the (semi-)automated construction of labor market ontologies and / or taxonomies. The purpose of this paper is to propose an unsupervised framework, OntoJob, that can identify and extract from raw vacancy text instances, attributes, and relations, such as job titles, worker qualities, and the non-taxonomic "is-a" relations between those concepts, and convert those to an expressive descriptive logic. Evaluation of the extracted worker qualities from OntoJob, using a small sample of 5621 job postings representing 1048 occupations, showed an overall lexical precision of 0.36 and recall of 0.22.
AbstractList Due to the rapidly changing labor market and the consequently widening information gap between the labor market and education, there is a need for methods that can tackle, or at least ease, the construction of labor market ontologies. The current study set out to examine the viability of Ontology Learning (OL) methods for the (semi-)automated construction of labor market ontologies and / or taxonomies. The purpose of this paper is to propose an unsupervised framework, OntoJob, that can identify and extract from raw vacancy text instances, attributes, and relations, such as job titles, worker qualities, and the non-taxonomic "is-a" relations between those concepts, and convert those to an expressive descriptive logic. Evaluation of the extracted worker qualities from OntoJob, using a small sample of 5621 job postings representing 1048 occupations, showed an overall lexical precision of 0.36 and recall of 0.22.
Author Weber, Christian
Vrolijk, Jarno
Pelucchi, Mauro
Tavakoli, Mohammadreza
Kismihok, Gabor
Mol, Stefan T.
Author_xml – sequence: 1
  givenname: Jarno
  surname: Vrolijk
  fullname: Vrolijk, Jarno
  email: j.vrolijk@uva.nl
  organization: Amsterdam Business School, University of Amsterdam,Amsterdam,Netherlands
– sequence: 2
  givenname: Stefan T.
  surname: Mol
  fullname: Mol, Stefan T.
  email: s.t.mol@uva.nl
  organization: Amsterdam Business School, University of Amsterdam,Amsterdam,Netherlands
– sequence: 3
  givenname: Christian
  surname: Weber
  fullname: Weber, Christian
  email: christian.weber@uni-siegen.de
  organization: Institute of Knowledge Based Systems & Knowledge Management, University of Siegen,Siegen,Germany
– sequence: 4
  givenname: Mohammadreza
  surname: Tavakoli
  fullname: Tavakoli, Mohammadreza
  email: reza.tavakoli@tib.eu
  organization: Leibniz Information Centre for Science and Technology (TIB),Hannover,Germany
– sequence: 5
  givenname: Gabor
  surname: Kismihok
  fullname: Kismihok, Gabor
  email: gabor.kismihok@tib.eu
  organization: Leibniz Information Centre for Science and Technology (TIB),Hannover,Germany
– sequence: 6
  givenname: Mauro
  surname: Pelucchi
  fullname: Pelucchi, Mauro
  organization: Emsi Burning Glass,Boston,Massachusetts
BookMark eNotjrtOwzAUQI0EA5R-AQz-gQTbN37BVAUKrVJ1AObqRr6uIpoYGTP07ymC6UhnODpX7HxKEzF2K0UtpfB3q_a11co1slZCqVoI0YgzNvfWSWN0A4107pI9bKeS1qm_54vvkkYsFPivOqT9kXeEeRqmPY85jbzDPmW-wfxBhT9iwWt2EfHwRfN_ztj78umtfam67fOqXXTVIAFKhYQmOgs62Kgk6eBOW0E12vYAKKQKyvpI5rTkA4ne9Oic8xEEgdUiwozd_HUHItp95mHEfNx5Cwakhh9ja0RO
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC52841.2022.00040
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISBN 9781665434188
166543418X
EndPage 200
ExternalDocumentID 9736315
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-aea6f8735d7f21e5d8528d2457b33a012d279fe64349de0b6ba8889f30e3750f3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835706300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:36:55 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-aea6f8735d7f21e5d8528d2457b33a012d279fe64349de0b6ba8889f30e3750f3
PageCount 6
ParticipantIDs ieee_primary_9736315
PublicationCentury 2000
PublicationDate 2022-Jan.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationTitle 2022 IEEE 16th International Conference on Semantic Computing (ICSC)
PublicationTitleAbbrev ICSC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7950667
Snippet Due to the rapidly changing labor market and the consequently widening information gap between the labor market and education, there is a need for methods that...
SourceID ieee
SourceType Publisher
StartPage 195
SubjectTerms Conferences
Education
labor market intelligence
Ontologies
ontology engineering
ontology learning
Semantics
Taxonomy
Title OntoJob: Automated Ontology Learning from Labor Market Data
URI https://ieeexplore.ieee.org/document/9736315
WOSCitedRecordID wos000835706300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcDER4v4lgdGTBM7tmOYUKECBKUSIHWr4twZdUmqkvL7sZOoCImFzbrFurPke-_sd0fIufGcy4I2TMhcMo-IkfksJxhwkVuZGuAx1MMm9HicTqdm0iEXay0MItafz_AyLOu3fCjzVSiVDYwWSgRF-YbWqtFqtWq4ODKDh-HrUPrbNrA-3rThjH7NTKlTxmj7f5vtkP6P9o5O1llll3Sw2Auzldt_GD1y_VJU5WNpr-jNqio94ESgwRTK47Rtl_pBg2yEPoUTps-1sJneZlXWJ--ju7fhPWtHILC5J48VyzBTLtVCgnY8Rgmp9xB4IrUVIvPJBbg2Dj2sSAxgZJXNPKU1TkQoPBZwYp90i7LAA0LBchMnoDzIAc8Bc5s6JbTJVYIJd9Idkl4IwmzRdLmYtf4f_W0-Jlshyk0x4oR0q-UKT8lm_lXNP5dn9dF8A-Sdj10
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnry0Ypvc_Bo7G4em42epFpabWvBCr2VzWZSetmVuvX3m-wuFcGLtzCXMBPIfN8k3wxC18pxLm2kIkykgjhEDMRlOUYMZakWsTI0NOWwCTkex7OZmjTQzUYLAwDl5zO49cvyLd_k6dqXyjpKsoh5RfmW4JwGlVqr1sOFgeoMum9d4e5bz_to1Ygz-DU1pUwavb3_bbeP2j_qOzzZ5JUD1IDs0E9Xrn9itND9a1bkz7m-ww_rIneQEwz2Jl8gx3XD1AX2whE89GeMR6W0GT8mRdJG772nabdP6iEIZOnoY0ESSCIbSyaMtDQEYWLnoaFcSM1Y4tKLoVJZcMCCKwOBjnTiSK2yLADm0IBlR6iZ5RkcI2w0VSE3kYM5xrHAVMc2YlKlEQdOrbAnqOWDMP-o-lzMa_9P_zZfoZ3-dDScDwfjlzO06yNelSbOUbNYreECbadfxfJzdVke0zeMSJKk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+16th+International+Conference+on+Semantic+Computing+%28ICSC%29&rft.atitle=OntoJob%3A+Automated+Ontology+Learning+from+Labor+Market+Data&rft.au=Vrolijk%2C+Jarno&rft.au=Mol%2C+Stefan+T.&rft.au=Weber%2C+Christian&rft.au=Tavakoli%2C+Mohammadreza&rft.date=2022-01-01&rft.pub=IEEE&rft.spage=195&rft.epage=200&rft_id=info:doi/10.1109%2FICSC52841.2022.00040&rft.externalDocID=9736315