Parameter Estimation for the Hammerstein State Space System with Measurement Noise

This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control Conference S. 1318 - 1322
Hauptverfasser: Han, Jiahu, Li, Feng, Cao, Qingfeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 25.07.2022
Schlagworte:
ISSN:1934-1768
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by state space system, and the parameters estimation separation of the two subsystems is realized by using special test signals composed of binary signal and random signal. In the first place, characteristics of static nonlinear subsystem without activation using binary signals, the parameters of state space subsystem and colored noise model can be obtained by recursive extended least squares algorithm, which deals with noise interference issue. In addition, unmeasured state variable of estimated system is replaced with instrumental variable, the parameters of the nonlinear subsystem are identified by using cluster algorithm and the instrumental variable-based recursive least squares method based on measurement random signals. The results of simulation indicate that the proposed parameter estimation algorithm can realize good estimation accuracy for the Hammerstein state space system with measurement noise.
AbstractList This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by state space system, and the parameters estimation separation of the two subsystems is realized by using special test signals composed of binary signal and random signal. In the first place, characteristics of static nonlinear subsystem without activation using binary signals, the parameters of state space subsystem and colored noise model can be obtained by recursive extended least squares algorithm, which deals with noise interference issue. In addition, unmeasured state variable of estimated system is replaced with instrumental variable, the parameters of the nonlinear subsystem are identified by using cluster algorithm and the instrumental variable-based recursive least squares method based on measurement random signals. The results of simulation indicate that the proposed parameter estimation algorithm can realize good estimation accuracy for the Hammerstein state space system with measurement noise.
Author Li, Feng
Cao, Qingfeng
Han, Jiahu
Author_xml – sequence: 1
  givenname: Jiahu
  surname: Han
  fullname: Han, Jiahu
  email: lifeng@jsut.edu.cn
  organization: College of Electrical and Information Engineering, Jiangsu University of Technology,Changzhou,China,213001
– sequence: 2
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: College of Electrical and Information Engineering, Jiangsu University of Technology,Changzhou,China,213001
– sequence: 3
  givenname: Qingfeng
  surname: Cao
  fullname: Cao, Qingfeng
  organization: College of Electrical, Energy and Power Engineering, Yangzhou University,Yangzhou,China,225127
BookMark eNotkNtKAzEYhKMo2NY-gSB5gV1z2GTzX8pSrVAPWL0u2ewfGnF3SxKRvr0L9uYbmIFhmDm5GMYBCbnlrBQSONw1TaOU1roUTIgSYKJRZ2QJtQFjamW4kvqczDjIquC1NldkntIXY5oBlzPy_maj7TFjpKuUQ29zGAfqx0jzHuna9j3GlDEMdJttRro9WDfxOHk9_Q15T5_Rpp-IPQ6Zvowh4TW59PY74fKkC_L5sPpo1sXm9fGpud8UgUuZC-iUbLlnsnIAXSfBVbxSvq2U8UJZg65WfkpaDSgEWKsNaO7QOGy1dEYuyM1_b0DE3SFO4-Nxd7pA_gF_U1Nb
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC55666.2022.9902285
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9789887581536
9887581534
EISSN 1934-1768
EndPage 1322
ExternalDocumentID 9902285
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191035
  funderid: 10.13039/501100004608
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-9d53b1f034c99dd39c4145fb458f25a8ec75f99db69e229aa68961ce8ceb63c83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932071601074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:18:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-9d53b1f034c99dd39c4145fb458f25a8ec75f99db69e229aa68961ce8ceb63c83
PageCount 5
ParticipantIDs ieee_primary_9902285
PublicationCentury 2000
PublicationDate 2022-July-25
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-25
  day: 25
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2022
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.1890552
Snippet This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The...
SourceID ieee
SourceType Publisher
StartPage 1318
SubjectTerms Clustering algorithms
Estimation
Hammerstein nonlinear system
Heuristic algorithms
Instruments
Interference
Measurement noise
Parameter estimation
Simulation
Special test signals
Title Parameter Estimation for the Hammerstein State Space System with Measurement Noise
URI https://ieeexplore.ieee.org/document/9902285
WOSCitedRecordID wos000932071601074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFd-khK32joWCe1ZL1mk9ClIfQB2YIkS5AlKXn09_cku0kLXboYYSEMJ3T67vN9dwD3zipmtAqZDCEW1aYmsz6EDCMxGSwVUhQmNZuQ47GaTvWkBQ87LYz3PiWf-X4cpn_51dJtI1U2QM9JqeJtaEspaq3Wt9cVsb5lrQCmTOd6UJYlR6gSsxAo7Tcrf7VQSTfI6Ph_3z6B3l6KRya7S-YUWn5xBkc_qgh24WViYoYVGogM8cDWWkSCYJQguCMNNR2bWpKELMkrhsn4TCWcSeRhyfOeKCTj5Xzte_A-Gr6VT1nTKiGbY5C5yXTFmc3DIyuc1lXFtCvyggdbcBUoN8o7yQPOWKE9pdoYobTInVfOW8GcYufQWSwX_gKIcRJnq4An2xY5ldZah6BWOPSpVXDuErrROrOPuhrGrDHM1d-vr-EwbkBkQym_gc5mtfW3cOA-N_P16i5t4RdtwJ82
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8m4NHt-1mk2xyXloqtkvRCr2VJJtAL6304e83ya6tghcvS9gQFiZk8s23880APGrFEym4jVJrfVFtLCNlrI1cJJZahVnKiAzNJtI855OJGNXgaauFMcaE5DPT8sPwL79Y6I2nytrOc2LM6R7sU0Jwp1Rrfftd5itclhpgnIhYtLMsow6s-DwEjFvV2l9NVMId0jv539dPobkT46HR9po5g5qZn8PxjzqCDXgdSZ9j5UyEuu7IlmpE5OAocvAOVeS0b2uJArZEby5Qds9QxBl5JhYNd1QhyhezlWnCe687zvpR1Swhmrkwcx2JgiYqtp2EaCGKIhGaxIRaRSi3mEpudEqtm1FMGIyFlIwLFmvDtVEs0Ty5gPp8MTeXgKRO3Wxh3dlWJMapUko7WMu086qF1foKGt4604-yHsa0Msz1368f4LA_Hg6mg-f85QaO_GZ4bhTTW6ivlxtzBwf6cz1bLe_Ddn4B44GifQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Parameter+Estimation+for+the+Hammerstein+State+Space+System+with+Measurement+Noise&rft.au=Han%2C+Jiahu&rft.au=Li%2C+Feng&rft.au=Cao%2C+Qingfeng&rft.date=2022-07-25&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=1318&rft.epage=1322&rft_id=info:doi/10.23919%2FCCC55666.2022.9902285&rft.externalDocID=9902285