Parameter Estimation for the Hammerstein State Space System with Measurement Noise
This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by sta...
Gespeichert in:
| Veröffentlicht in: | Chinese Control Conference S. 1318 - 1322 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Technical Committee on Control Theory, Chinese Association of Automation
25.07.2022
|
| Schlagworte: | |
| ISSN: | 1934-1768 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by state space system, and the parameters estimation separation of the two subsystems is realized by using special test signals composed of binary signal and random signal. In the first place, characteristics of static nonlinear subsystem without activation using binary signals, the parameters of state space subsystem and colored noise model can be obtained by recursive extended least squares algorithm, which deals with noise interference issue. In addition, unmeasured state variable of estimated system is replaced with instrumental variable, the parameters of the nonlinear subsystem are identified by using cluster algorithm and the instrumental variable-based recursive least squares method based on measurement random signals. The results of simulation indicate that the proposed parameter estimation algorithm can realize good estimation accuracy for the Hammerstein state space system with measurement noise. |
|---|---|
| AbstractList | This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The Hammerstein nonlinear system has a static nonlinear subsystem represented by neural fuzzy system and a dynamical linear subsystem represented by state space system, and the parameters estimation separation of the two subsystems is realized by using special test signals composed of binary signal and random signal. In the first place, characteristics of static nonlinear subsystem without activation using binary signals, the parameters of state space subsystem and colored noise model can be obtained by recursive extended least squares algorithm, which deals with noise interference issue. In addition, unmeasured state variable of estimated system is replaced with instrumental variable, the parameters of the nonlinear subsystem are identified by using cluster algorithm and the instrumental variable-based recursive least squares method based on measurement random signals. The results of simulation indicate that the proposed parameter estimation algorithm can realize good estimation accuracy for the Hammerstein state space system with measurement noise. |
| Author | Li, Feng Cao, Qingfeng Han, Jiahu |
| Author_xml | – sequence: 1 givenname: Jiahu surname: Han fullname: Han, Jiahu email: lifeng@jsut.edu.cn organization: College of Electrical and Information Engineering, Jiangsu University of Technology,Changzhou,China,213001 – sequence: 2 givenname: Feng surname: Li fullname: Li, Feng organization: College of Electrical and Information Engineering, Jiangsu University of Technology,Changzhou,China,213001 – sequence: 3 givenname: Qingfeng surname: Cao fullname: Cao, Qingfeng organization: College of Electrical, Energy and Power Engineering, Yangzhou University,Yangzhou,China,225127 |
| BookMark | eNotkNtKAzEYhKMo2NY-gSB5gV1z2GTzX8pSrVAPWL0u2ewfGnF3SxKRvr0L9uYbmIFhmDm5GMYBCbnlrBQSONw1TaOU1roUTIgSYKJRZ2QJtQFjamW4kvqczDjIquC1NldkntIXY5oBlzPy_maj7TFjpKuUQ29zGAfqx0jzHuna9j3GlDEMdJttRro9WDfxOHk9_Q15T5_Rpp-IPQ6Zvowh4TW59PY74fKkC_L5sPpo1sXm9fGpud8UgUuZC-iUbLlnsnIAXSfBVbxSvq2U8UJZg65WfkpaDSgEWKsNaO7QOGy1dEYuyM1_b0DE3SFO4-Nxd7pA_gF_U1Nb |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/CCC55666.2022.9902285 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9789887581536 9887581534 |
| EISSN | 1934-1768 |
| EndPage | 1322 |
| ExternalDocumentID | 9902285 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20191035 funderid: 10.13039/501100004608 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i133t-9d53b1f034c99dd39c4145fb458f25a8ec75f99db69e229aa68961ce8ceb63c83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932071601074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-9d53b1f034c99dd39c4145fb458f25a8ec75f99db69e229aa68961ce8ceb63c83 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9902285 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-July-25 |
| PublicationDateYYYYMMDD | 2022-07-25 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-July-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control Conference |
| PublicationTitleAbbrev | CCC |
| PublicationYear | 2022 |
| Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
| Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
| SSID | ssj0060913 |
| Score | 2.1890552 |
| Snippet | This paper considered the parameters estimation algorithm for the Hammerstein state space system with measurement noise using special test signals. The... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1318 |
| SubjectTerms | Clustering algorithms Estimation Hammerstein nonlinear system Heuristic algorithms Instruments Interference Measurement noise Parameter estimation Simulation Special test signals |
| Title | Parameter Estimation for the Hammerstein State Space System with Measurement Noise |
| URI | https://ieeexplore.ieee.org/document/9902285 |
| WOSCitedRecordID | wos000932071601074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFd-khK32joWCe1ZL1mk9ClIfQB2YIkS5AlKXn09_cku0kLXboYYSEMJ3T67vN9dwD3zipmtAqZDCEW1aYmsz6EDCMxGSwVUhQmNZuQ47GaTvWkBQ87LYz3PiWf-X4cpn_51dJtI1U2QM9JqeJtaEspaq3Wt9cVsb5lrQCmTOd6UJYlR6gSsxAo7Tcrf7VQSTfI6Ph_3z6B3l6KRya7S-YUWn5xBkc_qgh24WViYoYVGogM8cDWWkSCYJQguCMNNR2bWpKELMkrhsn4TCWcSeRhyfOeKCTj5Xzte_A-Gr6VT1nTKiGbY5C5yXTFmc3DIyuc1lXFtCvyggdbcBUoN8o7yQPOWKE9pdoYobTInVfOW8GcYufQWSwX_gKIcRJnq4An2xY5ldZah6BWOPSpVXDuErrROrOPuhrGrDHM1d-vr-EwbkBkQym_gc5mtfW3cOA-N_P16i5t4RdtwJ82 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8m4NHt-1mk2xyXloqtkvRCr2VJJtAL6304e83ya6tghcvS9gQFiZk8s23880APGrFEym4jVJrfVFtLCNlrI1cJJZahVnKiAzNJtI855OJGNXgaauFMcaE5DPT8sPwL79Y6I2nytrOc2LM6R7sU0Jwp1Rrfftd5itclhpgnIhYtLMsow6s-DwEjFvV2l9NVMId0jv539dPobkT46HR9po5g5qZn8PxjzqCDXgdSZ9j5UyEuu7IlmpE5OAocvAOVeS0b2uJArZEby5Qds9QxBl5JhYNd1QhyhezlWnCe687zvpR1Swhmrkwcx2JgiYqtp2EaCGKIhGaxIRaRSi3mEpudEqtm1FMGIyFlIwLFmvDtVEs0Ty5gPp8MTeXgKRO3Wxh3dlWJMapUko7WMu086qF1foKGt4604-yHsa0Msz1368f4LA_Hg6mg-f85QaO_GZ4bhTTW6ivlxtzBwf6cz1bLe_Ddn4B44GifQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Parameter+Estimation+for+the+Hammerstein+State+Space+System+with+Measurement+Noise&rft.au=Han%2C+Jiahu&rft.au=Li%2C+Feng&rft.au=Cao%2C+Qingfeng&rft.date=2022-07-25&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=1318&rft.epage=1322&rft_id=info:doi/10.23919%2FCCC55666.2022.9902285&rft.externalDocID=9902285 |