Deep Convolutional Autoencoder Architecture for Predictive Maintenance Applications
Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or hal...
Saved in:
| Published in: | 2022 30th Signal Processing and Communications Applications Conference (SIU) pp. 1 - 4 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English Turkish |
| Published: |
IEEE
15.05.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or halts in the production. To prevent these problems, a smart system to decide the timing of the maintenance must be established. In this study, we develop an auto-encoder extension of previously proposed deep convolutional network that is trained successfully on the modelling of electroencephalogram (EEG) signals with high performance. The auto-encoder extracts features from the vibration signals collected from the machinery. This method allows us to synthesize multi-channel vibration data which we use to classify the type of the failure that the machinery bearing is going to face, without expert field knowledge and with a high accuracy. The performance of the proposed network is tested on the publicly available Case Western Reserve University (CWRU) bearing dataset with the classification accuracy. Proposed network showed a better classification performance, allowed smaller bottleneck feature sizes and faster training times compared to the Normalized Sparse Auto-Encoder - Locally Connected Network (NSAE-LCN), which is one of the best performing networks on the same dataset. |
|---|---|
| AbstractList | Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or halts in the production. To prevent these problems, a smart system to decide the timing of the maintenance must be established. In this study, we develop an auto-encoder extension of previously proposed deep convolutional network that is trained successfully on the modelling of electroencephalogram (EEG) signals with high performance. The auto-encoder extracts features from the vibration signals collected from the machinery. This method allows us to synthesize multi-channel vibration data which we use to classify the type of the failure that the machinery bearing is going to face, without expert field knowledge and with a high accuracy. The performance of the proposed network is tested on the publicly available Case Western Reserve University (CWRU) bearing dataset with the classification accuracy. Proposed network showed a better classification performance, allowed smaller bottleneck feature sizes and faster training times compared to the Normalized Sparse Auto-Encoder - Locally Connected Network (NSAE-LCN), which is one of the best performing networks on the same dataset. |
| Author | Catak, Yigit Guney, Osman Berke Ozkan, Huseyin Sahin, Kerem |
| Author_xml | – sequence: 1 givenname: Yigit surname: Catak fullname: Catak, Yigit email: yigitcatak@sabanciuniv.edu organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye – sequence: 2 givenname: Kerem surname: Sahin fullname: Sahin, Kerem email: keremsahin@sabanciuniv.edu organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye – sequence: 3 givenname: Osman Berke surname: Guney fullname: Guney, Osman Berke email: osmanberke@sabanciuniv.edu organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye – sequence: 4 givenname: Huseyin surname: Ozkan fullname: Ozkan, Huseyin email: huseyin.ozkan@sabanciuniv.edu organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye |
| BookMark | eNotj1tLwzAYQCPog5v-AhHyB1qT5tLksdTbYOJg2_PI5SsGalKydOC_V9nOy3k7cBboOqYICD1SUlNK9NN2tRdCSFE3pGlqrSRXTF6hBZVScEF0w2_R9hlgwn2KpzTOJaRoRtzNJUF0yUPGXXZfoYArcwY8pIw3GXxwJZwAf5gQC0QTHeBumsbgzH_heIduBjMe4f7iJdq_vuz692r9-bbqu3UVKGOlUmpgCvQfoIgdNPPcCEpAeiMI9Uz4tvWOW8s1U1pb7eTAjQNvLbO6NWyJHs7dAACHKYdvk38Ol0_2C0cMT2Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SIU55565.2022.9864836 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665450924 9781665450928 |
| EndPage | 4 |
| ExternalDocumentID | 9864836 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i133t-88f38e9999e80bf93d4a510e6da501d35d77dc4bb493899b9c6f4acedbb3b97a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001307163400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:00 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Turkish |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-88f38e9999e80bf93d4a510e6da501d35d77dc4bb493899b9c6f4acedbb3b97a3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9864836 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 30th Signal Processing and Communications Applications Conference (SIU) |
| PublicationTitleAbbrev | SIU |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7944152 |
| Snippet | Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autoencoder Convolution Deep Learning Feature extraction Machinery Predictive Maintenance Production Time Series Processing Timing Training Vibrations |
| Title | Deep Convolutional Autoencoder Architecture for Predictive Maintenance Applications |
| URI | https://ieeexplore.ieee.org/document/9864836 |
| WOSCitedRecordID | wos001307163400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPfTUFi19k0OPje6a91HaSgutCFbwJnlMQCgqdtff32RdrIVeegshJDB5zEy-fF8QulfMWUdVRkLOgTDjc6JCAOJB8BDzZ2qhIgq_ydFIzWZ63EAPey4MAFSPz6CbihWW71euTFdlvSQlrqhooqaUYsfVqkk5eaZ7k9cp5zE-iUlfv9-t2_76NKXyGcOT_412ijo_5Ds83ruVM9SAZRtNngDWOLbY1kvFfOJBWaySDKWHDR4c4AE4xqGxh4TApLMMv5ukCZGENQAPDvDqDpoOnz8eX0j9HwJZxEyyIEoFqiBGdBpUZoOmnpm4pUB4w7PcU-6l9I5Zy3RSzbPaicCMA28ttVoaeo5ay9USLhCONYFDYF5G9-z7YDMBhitRyXExbS9ROxlkvt5JXsxrW1z9XX2NjpPNE6ie8xvUKjYl3KIjty0WX5u7ap6-AfLWmPU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB2sLbSntmjpd3Posau7m2Q3OUpbUaoiqOBNks0EhKJiV39_k3WxFnrpLYSQwORjZvLyXgCeBct0RkUY2IhjwJSJAmEtBgYTbl3-TDUWROFeOhiI6VQOK_Cy58IgYvH4DBu-WGD5Zplt_FVZ00uJC5ocwTFnLA53bK2SlhOFsjnqTjh3EYpL--K4Ubb-9W1K4TXa5_8b7wLqP_Q7Mtw7lkuo4KIGozfEFXEttuViUZ-ktcmXXojS4Jq0DhAB4iJR14PHYPxpRvrKq0J4aQ0krQPEug6T9vv4tROUPyIEc5dL5oEQlgp0MZ1EEWorqWHKbSpMjOJhZCg3aWoypjWTXjdPyyyxTGVotKZapopeQXWxXOA1EFdjOVpmUuegTYw6TFBxkRSCXEzqG6h5g8xWO9GLWWmL27-rn-C0M-73Zr3u4OMOzrz9PcQe8Xuo5usNPsBJts3nX-vHYs6-ARSLnDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+30th+Signal+Processing+and+Communications+Applications+Conference+%28SIU%29&rft.atitle=Deep+Convolutional+Autoencoder+Architecture+for+Predictive+Maintenance+Applications&rft.au=Catak%2C+Yigit&rft.au=Sahin%2C+Kerem&rft.au=Guney%2C+Osman+Berke&rft.au=Ozkan%2C+Huseyin&rft.date=2022-05-15&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FSIU55565.2022.9864836&rft.externalDocID=9864836 |