Deep Convolutional Autoencoder Architecture for Predictive Maintenance Applications

Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or hal...

Full description

Saved in:
Bibliographic Details
Published in:2022 30th Signal Processing and Communications Applications Conference (SIU) pp. 1 - 4
Main Authors: Catak, Yigit, Sahin, Kerem, Guney, Osman Berke, Ozkan, Huseyin
Format: Conference Proceeding
Language:English
Turkish
Published: IEEE 15.05.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or halts in the production. To prevent these problems, a smart system to decide the timing of the maintenance must be established. In this study, we develop an auto-encoder extension of previously proposed deep convolutional network that is trained successfully on the modelling of electroencephalogram (EEG) signals with high performance. The auto-encoder extracts features from the vibration signals collected from the machinery. This method allows us to synthesize multi-channel vibration data which we use to classify the type of the failure that the machinery bearing is going to face, without expert field knowledge and with a high accuracy. The performance of the proposed network is tested on the publicly available Case Western Reserve University (CWRU) bearing dataset with the classification accuracy. Proposed network showed a better classification performance, allowed smaller bottleneck feature sizes and faster training times compared to the Normalized Sparse Auto-Encoder - Locally Connected Network (NSAE-LCN), which is one of the best performing networks on the same dataset.
AbstractList Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the necessary amount causes separate problems resulting with unnecessary expenses or halts in the production. To prevent these problems, a smart system to decide the timing of the maintenance must be established. In this study, we develop an auto-encoder extension of previously proposed deep convolutional network that is trained successfully on the modelling of electroencephalogram (EEG) signals with high performance. The auto-encoder extracts features from the vibration signals collected from the machinery. This method allows us to synthesize multi-channel vibration data which we use to classify the type of the failure that the machinery bearing is going to face, without expert field knowledge and with a high accuracy. The performance of the proposed network is tested on the publicly available Case Western Reserve University (CWRU) bearing dataset with the classification accuracy. Proposed network showed a better classification performance, allowed smaller bottleneck feature sizes and faster training times compared to the Normalized Sparse Auto-Encoder - Locally Connected Network (NSAE-LCN), which is one of the best performing networks on the same dataset.
Author Catak, Yigit
Guney, Osman Berke
Ozkan, Huseyin
Sahin, Kerem
Author_xml – sequence: 1
  givenname: Yigit
  surname: Catak
  fullname: Catak, Yigit
  email: yigitcatak@sabanciuniv.edu
  organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye
– sequence: 2
  givenname: Kerem
  surname: Sahin
  fullname: Sahin, Kerem
  email: keremsahin@sabanciuniv.edu
  organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye
– sequence: 3
  givenname: Osman Berke
  surname: Guney
  fullname: Guney, Osman Berke
  email: osmanberke@sabanciuniv.edu
  organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye
– sequence: 4
  givenname: Huseyin
  surname: Ozkan
  fullname: Ozkan, Huseyin
  email: huseyin.ozkan@sabanciuniv.edu
  organization: Sabancı Üniversitesi,Mühendislik ve Doğa Bilimleri Fakültesi,İstanbul,Türkiye
BookMark eNotj1tLwzAYQCPog5v-AhHyB1qT5tLksdTbYOJg2_PI5SsGalKydOC_V9nOy3k7cBboOqYICD1SUlNK9NN2tRdCSFE3pGlqrSRXTF6hBZVScEF0w2_R9hlgwn2KpzTOJaRoRtzNJUF0yUPGXXZfoYArcwY8pIw3GXxwJZwAf5gQC0QTHeBumsbgzH_heIduBjMe4f7iJdq_vuz692r9-bbqu3UVKGOlUmpgCvQfoIgdNPPcCEpAeiMI9Uz4tvWOW8s1U1pb7eTAjQNvLbO6NWyJHs7dAACHKYdvk38Ol0_2C0cMT2Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIU55565.2022.9864836
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665450924
9781665450928
EndPage 4
ExternalDocumentID 9864836
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-88f38e9999e80bf93d4a510e6da501d35d77dc4bb493899b9c6f4acedbb3b97a3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001307163400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:00 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Turkish
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-88f38e9999e80bf93d4a510e6da501d35d77dc4bb493899b9c6f4acedbb3b97a3
PageCount 4
ParticipantIDs ieee_primary_9864836
PublicationCentury 2000
PublicationDate 2022-May-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-15
  day: 15
PublicationDecade 2020
PublicationTitle 2022 30th Signal Processing and Communications Applications Conference (SIU)
PublicationTitleAbbrev SIU
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7944152
Snippet Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autoencoder
Convolution
Deep Learning
Feature extraction
Machinery
Predictive Maintenance
Production
Time Series Processing
Timing
Training
Vibrations
Title Deep Convolutional Autoencoder Architecture for Predictive Maintenance Applications
URI https://ieeexplore.ieee.org/document/9864836
WOSCitedRecordID wos001307163400175&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPfTUFi19k0OPje6a91HaSgutCFbwJnlMQCgqdtff32RdrIVeegshJDB5zEy-fF8QulfMWUdVRkLOgTDjc6JCAOJB8BDzZ2qhIgq_ydFIzWZ63EAPey4MAFSPz6CbihWW71euTFdlvSQlrqhooqaUYsfVqkk5eaZ7k9cp5zE-iUlfv9-t2_76NKXyGcOT_412ijo_5Ds83ruVM9SAZRtNngDWOLbY1kvFfOJBWaySDKWHDR4c4AE4xqGxh4TApLMMv5ukCZGENQAPDvDqDpoOnz8eX0j9HwJZxEyyIEoFqiBGdBpUZoOmnpm4pUB4w7PcU-6l9I5Zy3RSzbPaicCMA28ttVoaeo5ay9USLhCONYFDYF5G9-z7YDMBhitRyXExbS9ROxlkvt5JXsxrW1z9XX2NjpPNE6ie8xvUKjYl3KIjty0WX5u7ap6-AfLWmPU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB2sLbSntmjpd3Posau7m2Q3OUpbUaoiqOBNks0EhKJiV39_k3WxFnrpLYSQwORjZvLyXgCeBct0RkUY2IhjwJSJAmEtBgYTbl3-TDUWROFeOhiI6VQOK_Cy58IgYvH4DBu-WGD5Zplt_FVZ00uJC5ocwTFnLA53bK2SlhOFsjnqTjh3EYpL--K4Ubb-9W1K4TXa5_8b7wLqP_Q7Mtw7lkuo4KIGozfEFXEttuViUZ-ktcmXXojS4Jq0DhAB4iJR14PHYPxpRvrKq0J4aQ0krQPEug6T9vv4tROUPyIEc5dL5oEQlgp0MZ1EEWorqWHKbSpMjOJhZCg3aWoypjWTXjdPyyyxTGVotKZapopeQXWxXOA1EFdjOVpmUuegTYw6TFBxkRSCXEzqG6h5g8xWO9GLWWmL27-rn-C0M-73Zr3u4OMOzrz9PcQe8Xuo5usNPsBJts3nX-vHYs6-ARSLnDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+30th+Signal+Processing+and+Communications+Applications+Conference+%28SIU%29&rft.atitle=Deep+Convolutional+Autoencoder+Architecture+for+Predictive+Maintenance+Applications&rft.au=Catak%2C+Yigit&rft.au=Sahin%2C+Kerem&rft.au=Guney%2C+Osman+Berke&rft.au=Ozkan%2C+Huseyin&rft.date=2022-05-15&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FSIU55565.2022.9864836&rft.externalDocID=9864836