Using Adaptive Safe Experimentation Dynamics Algorithm for Maximizing Wind Farm Power Production

This research presents a model-free strategy for increasing wind farm power generation based on the Adaptive Safe Experimentation Dynamics Algorithm (ASEDA). The ASEDA method is an improved version of the Safe Experimentation Dynamics (SED) algorithm that modifies the current tuning variable to resp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 57th International Universities Power Engineering Conference (UPEC) s. 1 - 4
Hlavní autoři: Ahmad, Mohd Ashraf, Jui, Julakha Jahan, Ghazali, Mohd Riduwan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.08.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research presents a model-free strategy for increasing wind farm power generation based on the Adaptive Safe Experimentation Dynamics Algorithm (ASEDA). The ASEDA method is an improved version of the Safe Experimentation Dynamics (SED) algorithm that modifies the current tuning variable to respond to the changes in the objective function. The convergence accuracy is predicted to be enhanced further by adding the adaptive element to the modified SED equation. The ASEDA-based technique is used to determine the ideal control parameter for each turbine to maximize a wind farm's total power generation. A single single-row wind farm prototype with turbulence coupling among turbines is employed to validate the proposed approach. Simulation findings show that the ASEDA-based approach provides more total power generation than the original SED technique.
AbstractList This research presents a model-free strategy for increasing wind farm power generation based on the Adaptive Safe Experimentation Dynamics Algorithm (ASEDA). The ASEDA method is an improved version of the Safe Experimentation Dynamics (SED) algorithm that modifies the current tuning variable to respond to the changes in the objective function. The convergence accuracy is predicted to be enhanced further by adding the adaptive element to the modified SED equation. The ASEDA-based technique is used to determine the ideal control parameter for each turbine to maximize a wind farm's total power generation. A single single-row wind farm prototype with turbulence coupling among turbines is employed to validate the proposed approach. Simulation findings show that the ASEDA-based approach provides more total power generation than the original SED technique.
Author Ghazali, Mohd Riduwan
Jui, Julakha Jahan
Ahmad, Mohd Ashraf
Author_xml – sequence: 1
  givenname: Mohd Ashraf
  surname: Ahmad
  fullname: Ahmad, Mohd Ashraf
  email: mashraf@ump.edu.my
  organization: Universiti Malaysia Pahang (UMP),Faculty of Electrical and Electronics Engineering Technology (FTKEE),Pekan,Pahang,Malaysia
– sequence: 2
  givenname: Julakha Jahan
  surname: Jui
  fullname: Jui, Julakha Jahan
  email: julakha.ump@gmail.com
  organization: Universiti Malaysia Pahang (UMP),Faculty of Electrical and Electronics Engineering Technology (FTKEE),Pekan,Pahang,Malaysia
– sequence: 3
  givenname: Mohd Riduwan
  surname: Ghazali
  fullname: Ghazali, Mohd Riduwan
  email: riduwan@ump.edu.my
  organization: Universiti Malaysia Pahang (UMP),Faculty of Electrical and Electronics Engineering Technology (FTKEE),Pekan,Pahang,Malaysia
BookMark eNotj8FOhDAYhGuiB133CUxMX4C1LYXCkSCrJmskUeJx_aF_1yZLIQV116cX4l5mDpNvMnNFzl3nkJBbzlacs_SuKos8ipgQKzFLmnKlkuiMLFOV8DiO5BRG4SX5qAbrdjTT0I_2G-krGKTFoUdvW3QjjLZz9P7ooLXNQLP9rvN2_Gyp6Tx9hoNt7e_Mv1un6Rp8S8vuBz0tfae_mhm-JhcG9gMuT74g1bp4yx-DzcvDU55tAsvDcAwSidooGTecS5MYaaCWSqGRUkmWNiZJmORcRDHUDITQdaO1AYHTj1ADsHBBbv57LSJu-2k--OP29Dv8A4k4VDM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UPEC55022.2022.9917785
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665455053
1665455055
EndPage 4
ExternalDocumentID 9917785
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-84edf746c114f8f4fab477ef447409cf880411256ab0a22dbcddfa2e4553daa03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886926200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu May 29 05:57:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-84edf746c114f8f4fab477ef447409cf880411256ab0a22dbcddfa2e4553daa03
PageCount 4
ParticipantIDs ieee_primary_9917785
PublicationCentury 2000
PublicationDate 2022-Aug.-30
PublicationDateYYYYMMDD 2022-08-30
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-30
  day: 30
PublicationDecade 2020
PublicationTitle 2022 57th International Universities Power Engineering Conference (UPEC)
PublicationTitleAbbrev UPEC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.805259
Snippet This research presents a model-free strategy for increasing wind farm power generation based on the Adaptive Safe Experimentation Dynamics Algorithm (ASEDA)....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Heuristic algorithms
Linear programming
power generation
Prediction algorithms
renewable energy
safe experimentation dynamics
Wind energy generation
wind farm
Wind farms
Wind power generation
Title Using Adaptive Safe Experimentation Dynamics Algorithm for Maximizing Wind Farm Power Production
URI https://ieeexplore.ieee.org/document/9917785
WOSCitedRecordID wos000886926200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU38TQ4eratd0mTHMTs86CjodLeZNu9pwW5jP0T8603asiF48VJKSQm8B3nfl-T7HsClCUKiQBqPKxIeT3nXU6TcFStheRwKXbp9Pt_L4VCNx924BlcbLQwiFpfP8Nq9Fmf5Zpau3VZZ22IZKZWoQ11KWWq1KtHvjd9tj-Kob_F24ORV9lEN_tU1pSgag73_TbcPra36jsWbunIANZw24bU422c9o-dugWKPmpBFW3t-F192W7aXX7Lex9vMsv73nFlMyh70V5Zn3-7_F0vB2UAvcha79mhuHlP6x7ZgNIie-nde1R3ByyyvXHmKoyHJw9QyGlLESSdcSiTOpeVsKSnnLGThS6gTXweBSVJjSAfIhegYrf3OITSmsykeAbPly9eJEn6iNKeQEgw7JJ1emaOyCPAYmi46k3lpgDGpAnPy9-dT2HUJKDZe_TNorBZrPIed9HOVLRcXRdZ-ALH9m9k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKeiTyiZ-mwcfratZ0mSPY25M3EbBTfc20yZXC-6DfYj4603asiH44kspJSVwL-Sek-ScC3CtaYBIhfaYRO6xmNU8idJdseKWxxmuMrfP547o9eRwWAsLcLPWwhhj0stn5ta9pmf5ehqv3FZZxWIZISTfgm3OGL3L1Fq57PfOr1UGYbNhETd1Aiv7yIf_6puSlo3W_v8mPIDyRn9HwnVlOYSCmZTgNT3dJ3WtZm6JIk8KDWluDPpdhMl91mB-Qeofb1PL-9_HxKJS0lVfyTj5dv-_WBJOWmo-JqFrkObm0ZmDbBkGrWa_0fby_gheYpnl0pPMaBQsiC2nQYkMVcSEMMiYsKwtRum8hSyACVTkK0p1FGuNihrGeVUr5VePoDiZTswxEFvAfBVJ7kdSMQwwMkEVhVMsMyMtBjyBkovOaJZZYIzywJz-_fkKdtv9bmfUeeg9nsGeS0a6DeufQ3E5X5kL2Ik_l8lifplm8Af5qZ8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+57th+International+Universities+Power+Engineering+Conference+%28UPEC%29&rft.atitle=Using+Adaptive+Safe+Experimentation+Dynamics+Algorithm+for+Maximizing+Wind+Farm+Power+Production&rft.au=Ahmad%2C+Mohd+Ashraf&rft.au=Jui%2C+Julakha+Jahan&rft.au=Ghazali%2C+Mohd+Riduwan&rft.date=2022-08-30&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FUPEC55022.2022.9917785&rft.externalDocID=9917785