Sparse Matrix Ordering Method with a Quantum Annealing Approach and its Parameter Tuning

Quantum annealing realizes quantum computers specialized for combinatorial optimization problems (COPs). A COP is formulated as a Hamiltonian, and quantum annealing obtains a solution by finding the ground state of the Hamiltonian. The ease of finding a solution depends on the weights assigned to th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC) s. 258 - 264
Hlavní autoři: Komiyama, Tomoko, Suzuki, Tomohiro
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum annealing realizes quantum computers specialized for combinatorial optimization problems (COPs). A COP is formulated as a Hamiltonian, and quantum annealing obtains a solution by finding the ground state of the Hamiltonian. The ease of finding a solution depends on the weights assigned to the cost and constraint functions when formulating the problem. In other words, parameter tuning is essential in solving problems with quantum annealing. In the present paper, the problem of searching an ordering that reduces the fill-in for a sparse direct solver is formulated as a Hamiltonian, and quantum annealing finds the solution to this problem. We discuss the necessity and effectiveness of parameter tuning for solving COPs with quantum annealing. The results after weight tuning show that we can improve the rate of an optimal solution obtained by a maximum of 94% for {5\,\times \,5} matrices, 68% for {6\,\times \,6} matrices, and 27% for {7\,\times \,7} matrices. Moreover, it is shown that giving high weights to the constraints we want to satisfy will not provide an optimal solution.
AbstractList Quantum annealing realizes quantum computers specialized for combinatorial optimization problems (COPs). A COP is formulated as a Hamiltonian, and quantum annealing obtains a solution by finding the ground state of the Hamiltonian. The ease of finding a solution depends on the weights assigned to the cost and constraint functions when formulating the problem. In other words, parameter tuning is essential in solving problems with quantum annealing. In the present paper, the problem of searching an ordering that reduces the fill-in for a sparse direct solver is formulated as a Hamiltonian, and quantum annealing finds the solution to this problem. We discuss the necessity and effectiveness of parameter tuning for solving COPs with quantum annealing. The results after weight tuning show that we can improve the rate of an optimal solution obtained by a maximum of 94% for {5\,\times \,5} matrices, 68% for {6\,\times \,6} matrices, and 27% for {7\,\times \,7} matrices. Moreover, it is shown that giving high weights to the constraints we want to satisfy will not provide an optimal solution.
Author Komiyama, Tomoko
Suzuki, Tomohiro
Author_xml – sequence: 1
  givenname: Tomoko
  surname: Komiyama
  fullname: Komiyama, Tomoko
  email: tkomiee@gmail.com
  organization: Graduate School of Engineering, University of Yamanashi,Ko-fu,Japan
– sequence: 2
  givenname: Tomohiro
  surname: Suzuki
  fullname: Suzuki, Tomohiro
  email: stomo@yamanashi.ac.jp
  organization: Graduate School of Engineering, University of Yamanashi,Ko-fu,Japan
BookMark eNotjl1LwzAYRiPohc79AhHyBzqTJs3HZSl-wcqUTfBuvGveusCaljRF_fdW9Oq5OA-Hc0XOQx-QkFvOVpwze1dX274qOJd2lbOcrxhjsjgjS6sNV6qQwihWXJL37QBxRFpDiv6LbqLD6MMHrTEde0c_fTpSoK8ThDR1tAwB4fTLy2GIPTQzDI76NNIXiNBhwkh3U5gf1-SihdOIy_9dkLeH-131lK03j89Vuc48FyJl2jmFB52bORKZZkWjZWvQNtrkSllwAjhwdNLadu5uD7KFHBUwiQasZWJBbv68HhH3Q_QdxO-9VZZbxcQP9ZhQGw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MCSoC51149.2021.00045
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665438605
1665438606
EndPage 264
ExternalDocumentID 9691960
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-7dd6eb728202e0705c74f8e9c782669ad3a1a1ed499f166fb4fa2e6a04e8a9903
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788295800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:44 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-7dd6eb728202e0705c74f8e9c782669ad3a1a1ed499f166fb4fa2e6a04e8a9903
PageCount 7
ParticipantIDs ieee_primary_9691960
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)
PublicationTitleAbbrev MCSOC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8330071
Snippet Quantum annealing realizes quantum computers specialized for combinatorial optimization problems (COPs). A COP is formulated as a Hamiltonian, and quantum...
SourceID ieee
SourceType Publisher
StartPage 258
SubjectTerms Annealing
Cost function
Costs
fill-in
Multicore processing
parameter tuning
Quantum annealing
Search problems
sparse direct solver
Stationary state
Title Sparse Matrix Ordering Method with a Quantum Annealing Approach and its Parameter Tuning
URI https://ieeexplore.ieee.org/document/9691960
WOSCitedRecordID wos000788295800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjoflw7XisKiqWlqIWqVt1ti9SB9KqTRA_n7MbFSGxsFnxEOnF8fmd771j7AGwENrGOpIG8kikxFlNCipCoY2DREAqbWg2oSaTfLHQ0xZ7PGhhEDEUn-GTH4a7fLe2tU-V9bTUtGCIoB8ppfZarUaUk8S6Nx7O1kM6PwivP0mT4MPZ_9U0JcSM0en_3nbGuj_iOz49hJVz1sKywxazDTFQ5GPvqP_FX71hJs3ycWgAzX02lQN_qwmn-oMPaPMErzPng8YynEPp-Kra8Sn4aiwCk89rnxLpsvfR83z4EjVNEaIV0ckqUs5JNIqYUpwi_a99q0SRo7YU6qXU4DJIIEFHTKZIpCyMKCBFCbHAHCj0ZBesXa5LvGRcpcYawNhk6PfLzOg8A3_ms96GTbkr1vGoLDd734tlA8j1349v2ImHfV_qccva1bbGO3ZsP6vVbnsfPtY3_6KYQA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1FBT2ptOK3OXh07W42TTbHUiwVu7XSCr2VSTILPbgt7a748022S0Xw4i0kh8DkY_Im894Qcg-YcWVCFQgNScCZw6yagQyQK20h4sCEqYpNyNEomc3UuEEedlwYRKySz_DRN6u_fLs0pQ-VtZVQbsM4gL7f4ZxFW7ZWTcuJQtVOe5Nlz70guGegsKhS4uz8KptSeY3-8f_mOyGtH_odHe8cyylpYN4ks8nKYVCkqdfU_6KvXjLTjdK0KgFNfTyVAn0rnaXKD9p11yd4pjnt1qLhFHJLF8WGjsHnYzlz0mnpgyIt8t5_mvYGQV0WIVg4QFkE0lqBWjqsFDJ0J7ZjJM8SVMY5eyEU2BgiiNA6LJNFQmSaZ8BQQMgxAed84jOyly9zPCdUMm00YKhj9DdmrFUSg3_1GS_EJu0FaXqrzFdb5Yt5bZDLv7vvyOFgmg7nw-fRyxU58kuwTfy4JnvFusQbcmA-i8VmfVst3DcaMJuH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+14th+International+Symposium+on+Embedded+Multicore%2FMany-core+Systems-on-Chip+%28MCSoC%29&rft.atitle=Sparse+Matrix+Ordering+Method+with+a+Quantum+Annealing+Approach+and+its+Parameter+Tuning&rft.au=Komiyama%2C+Tomoko&rft.au=Suzuki%2C+Tomohiro&rft.date=2021-12-01&rft.pub=IEEE&rft.spage=258&rft.epage=264&rft_id=info:doi/10.1109%2FMCSoC51149.2021.00045&rft.externalDocID=9691960