Topological and biological assessment of gene networks using miRNA- target gene data

In recent years, different biological data sets obtained by the next generation sequencing techniques have enhanced the analysis of the underlying molecular interactions of diseases. In our study we apply ARNetMiT, C3NET, WGCNA and ARACNE algorithms on microRNA-target gene datasets to infer gene coe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 Innovations in Intelligent Systems and Applications Conference (ASYU) s. 1 - 4
Hlavní autoři: Cingiz, Mustafa Ozgur, Diri, Banu
Médium: Konferenční příspěvek
Jazyk:angličtina
turečtina
Vydáno: IEEE 01.10.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, different biological data sets obtained by the next generation sequencing techniques have enhanced the analysis of the underlying molecular interactions of diseases. In our study we apply ARNetMiT, C3NET, WGCNA and ARACNE algorithms on microRNA-target gene datasets to infer gene coexpression networks of breast, prostate, colon and pancreatic cancers. Gene coexpression networks are evaluated according to their topological and biological features. WGCNA based gene coexpression networks fits to scale free network topology more than other gene coexpression networks. In biological assessment there is no obvious difference found between gene coexpression networks which derived from different algorithms.
DOI:10.1109/ASYU48272.2019.8946426