Generation of 12-Lead Electrocardiogram with Subject-Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder
Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE) to automatically generate realistic 12-lead ECG signals. Our...
Uložené v:
| Vydané v: | Proceedings (International Symposium on Biomedical Imaging) s. 1 - 5 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
28.03.2022
|
| Predmet: | |
| ISSN: | 1945-8452 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE) to automatically generate realistic 12-lead ECG signals. Our method differs from previous papers in that (i) it generates complete 12-lead studies and (ii) generated ECGs can be adjusted to correspond to specific subject characteristics, particularly those from images. We demonstrate the ability of the model to adjust to age, sex and Body Mass Index (BMI) values. Our model is the first to incorporate imaging information by including heart position and orientation as input conditions, to analyse anatomical influences on generated ECG morphology. The network shows high accuracy and sensitivity to different conditions. In addition, our method can extract a ten-dimensional latent space containing interpreted features of the 12 ECG leads, which correspond to interpretable ECG features. |
|---|---|
| AbstractList | Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE) to automatically generate realistic 12-lead ECG signals. Our method differs from previous papers in that (i) it generates complete 12-lead studies and (ii) generated ECGs can be adjusted to correspond to specific subject characteristics, particularly those from images. We demonstrate the ability of the model to adjust to age, sex and Body Mass Index (BMI) values. Our model is the first to incorporate imaging information by including heart position and orientation as input conditions, to analyse anatomical influences on generated ECG morphology. The network shows high accuracy and sensitivity to different conditions. In addition, our method can extract a ten-dimensional latent space containing interpreted features of the 12 ECG leads, which correspond to interpretable ECG features. |
| Author | Sang, Yuling Beetz, Marcel Grau, Vicente |
| Author_xml | – sequence: 1 givenname: Yuling surname: Sang fullname: Sang, Yuling organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK – sequence: 2 givenname: Marcel surname: Beetz fullname: Beetz, Marcel organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK – sequence: 3 givenname: Vicente surname: Grau fullname: Grau, Vicente organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK |
| BookMark | eNotUNtOwkAUXI0mAvIFJmY_wOLe2mUfsSI2aeID4is5uz2FJdAl26LxD_xsa2ReZiYzOSeZIblqQoOE3HM24ZyZx2L5VKRiKsxEMCEmRmdcSX5BhjzLUiWMkOKSDLhRaTJVqbgh47bdsR5aKcnUgPwssMEInQ8NDTXlIikRKjrfo-ticBArHzYRDvTLd1u6PNldHyTLIzpfe_dAiwNsMHnG6D-xovkWIriud23nXUtXrW82FGgemsr__YA9_YDo4axnpy5g40KF8ZZc17BvcXzmEVm9zN_z16R8WxT5rEw8l7JL0tpxoXkNNkOmsaoY1yJDpbWxVqGyhrNe8EylVmrMLEghUBlhHfQlK0fk7v-uR8T1MfoDxO_1eTj5C1lxZqU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI52829.2022.9761431 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665429232 9781665429238 |
| EISSN | 1945-8452 |
| EndPage | 5 |
| ExternalDocumentID | 9761431 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Commission funderid: 10.13039/501100000780 |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i133t-5fc1271fab6e07edd01726e4779bb4e4b910bb41645b37e6ba322e492bca477b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836243800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Jul 18 03:48:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-5fc1271fab6e07edd01726e4779bb4e4b910bb41645b37e6ba322e492bca477b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9761431 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-March-28 |
| PublicationDateYYYYMMDD | 2022-03-28 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-March-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.225788 |
| Snippet | Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models Biological system modeling Deep learning ECG Generation Electrocardiography Heart Heart Position and Orientation Morphology Sensitivity Variational Auto-encoder |
| Title | Generation of 12-Lead Electrocardiogram with Subject-Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9761431 |
| WOSCitedRecordID | wos000836243800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCLPzbxNzl4XLa1TZrmqHPDgYyBOnYbTfIKPbjK7PY3-Gf7kpbpwIu3UJq2vEC-fl_e-x4hdyCch4rkzAaRYc5hjikbxyzQSkRpIjX4QtrZs5xMkvlcTRuks62FAQCffAZdN_Rn-bYwayeV9RA6Ed6R6-xJKatara2eglDIkZrXRcBBX_XGLw9j4Q4KkQWGYbeevNNFxYPI6Oh_rz8m7Z9qPDrd4swJacDylBz-MhJska_KPdoFmRYZDULmWmfSYdXjxvicU5eGRZ3sSnGzcOoL873ns9x06PgdtxX2iE_bgKWDXRNn6tMKaErxe2xeaYd0hhy71hHp_bosnB-mhVWbvI2Gr4MnVvdYYDmy05KJzAShDLJUx9CXYK3jhDFwKZXWHLjG3wkcIKkSOpIQ6xR3AOAq1CbFm3R0RprLYgnnhBqOWI_zkBBlPE2FcmxLJSCMFrIP-oK0XEwXH5WNxqIO5-Xfl6_IgVs2l-4VJtekWa7WcEP2zabMP1e3fu2_ATwzsL8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG2ImqgvfoDx2z74SIFt7bo-KkJYREIiEt7I2t0le5AZHPwGf7a324KS-OJbs6xL0y337Jzeey4h9yCsh4rkLHY8w6zDHFOx7zNHK-FFgdRQFNJOh3I0CmYzNa6R5qYWBgCK5DNo2WFxlh9nZmWlsjZCJ8I7cp1dwbnrlNVaG0UFwZAjOa_KgJ2Oaoevj6GwR4XIA123VU3f6qNSwEj_6H8LOCaNn3o8Ot4gzQmpweKUHP6yEqyTr9I_2m4zzRLquMw2z6S9ssuNKbJObSIWtcIrxXBh9RdWdJ9PUtOk4TsGFvaET1tDTLvbNs60SCygEcX1xGmpHtIpsuxKSaQPqzyzjpgxLBvkrd-bdAes6rLAUuSnOROJcVzpJJH2oSMhji0r9IFLqbTmwDX-UOAAaZXQngRfRxgDgCtXmwhv0t4Z2VlkCzgn1HBEe5yHlCjhUSSU5VsqAGG0kB3QF6Ru93T-URppzKvtvPz78h3ZH0xehvNhOHq-Igf2FdrkLze4Jjv5cgU3ZM-s8_RzeVt8B9-WxrQG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Generation+of+12-Lead+Electrocardiogram+with+Subject-Specific%2C+Image-Derived+Characteristics+Using+a+Conditional+Variational+Autoencoder&rft.au=Sang%2C+Yuling&rft.au=Beetz%2C+Marcel&rft.au=Grau%2C+Vicente&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI52829.2022.9761431&rft.externalDocID=9761431 |