CVA2E: A Conditional Variational Autoencoder With an Adversarial Training Process for Hyperspectral Imagery Classification

Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 58; číslo 8; s. 5676 - 5692
Hlavní autoři: Wang, Xue, Tan, Kun, Du, Qian, Chen, Yu, Du, Peijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads to the applications being of low practical performance. In this article, in order to better handle this problem, a novel generative model named the conditional variational autoencoder with an adversarial training process (CVA 2 E) is proposed for hyperspectral imagery classification by combining variational inference and an adversarial training process in the spectral sample generation. Moreover, two penalty terms are added to promote the diversity and optimize the spectral shape features of the generated samples. The performance on three different real hyperspectral data sets confirms the superiority of the proposed method.
AbstractList Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads to the applications being of low practical performance. In this article, in order to better handle this problem, a novel generative model named the conditional variational autoencoder with an adversarial training process (CVA2E) is proposed for hyperspectral imagery classification by combining variational inference and an adversarial training process in the spectral sample generation. Moreover, two penalty terms are added to promote the diversity and optimize the spectral shape features of the generated samples. The performance on three different real hyperspectral data sets confirms the superiority of the proposed method.
Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads to the applications being of low practical performance. In this article, in order to better handle this problem, a novel generative model named the conditional variational autoencoder with an adversarial training process (CVA 2 E) is proposed for hyperspectral imagery classification by combining variational inference and an adversarial training process in the spectral sample generation. Moreover, two penalty terms are added to promote the diversity and optimize the spectral shape features of the generated samples. The performance on three different real hyperspectral data sets confirms the superiority of the proposed method.
Author Tan, Kun
Wang, Xue
Chen, Yu
Du, Peijun
Du, Qian
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-6999-1362
  surname: Wang
  fullname: Wang, Xue
  organization: Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-6353-0146
  surname: Tan
  fullname: Tan, Kun
  email: tankuncu@gmail.com
  organization: Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
– sequence: 3
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA
– sequence: 4
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Key Laboratory for Land Environment and Disaster Monitoring of National Administration of Surveying and Geoinformation (NASG), China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Peijun
  orcidid: 0000-0002-2488-2656
  surname: Du
  fullname: Du, Peijun
  email: dupjrs@gmail.com
  organization: Key Laboratory for Satellite Mapping Technology and Applications of National Administration of Surveying and Geoinformation (NASG), Nanjing University, Nanjing, China
BookMark eNotj11LwzAUhoNMcJv-APEm4HVnvpY23pUyt8FA0TkvS5aezIyumUknzF9vdXtvzsvh4YF3gHqNbwChW0pGlBL1sJy-vo0YYWTElMw4EReoT8fjLCFSiB7qE6pkwjLFrtAgxi0hVIxp2kc_xSpnk0ec48I3lWudb3SNVzo4fe75ofXQGF9BwB-u_cS6wXn1DSH-QTVeBu0a12zwS_AGYsTWBzw77jtgD6YNHTLf6Q2EIy5qHaOzzvy7r9Gl1XWEm_MdovenybKYJYvn6bzIF4mjnLeJMFYSZtMM1sC6aZkwCkCYilKbppZ2PyFsRTgllgjDKScW6DpVmdJ8rSUfovuTdx_81wFiW279IXTTYskEk11SlnbU3YlyAFDug9vpcCyzzqKk5L-762sr
CODEN IGRSD2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.2968304
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 5692
ExternalDocumentID 8989966
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 10.13039/501100012246
– fundername: National Natural Science Foundation of China
  grantid: 41871337
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-i133t-4cf602f78ebe268384c9ee4cd11f77f126844fd0310f04c3130fe1b7989a3ba63
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552371900036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:23:39 EDT 2025
Wed Aug 27 02:29:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-4cf602f78ebe268384c9ee4cd11f77f126844fd0310f04c3130fe1b7989a3ba63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2488-2656
0000-0002-6999-1362
0000-0001-6353-0146
0000-0001-8354-7500
PQID 2426666727
PQPubID 85465
PageCount 17
ParticipantIDs ieee_primary_8989966
proquest_journals_2426666727
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0014517
Score 2.5138535
Snippet Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 5676
SubjectTerms Classification
Data models
Gallium nitride
Generative adversarial network (GAN)
Generative adversarial networks
Generators
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Imagery
Spectra
Training
variational autoencoder (VAE)
Title CVA2E: A Conditional Variational Autoencoder With an Adversarial Training Process for Hyperspectral Imagery Classification
URI https://ieeexplore.ieee.org/document/8989966
https://www.proquest.com/docview/2426666727
Volume 58
WOSCitedRecordID wos000552371900036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MoaAHf2yK0yk5eLRb22RN662MzQkyROfcbaT5gQPdpOsE_etN0jgEvXhrIQ3lvbR5X9573wdwIQiRmDDsdRLFPCJi6WWK-56gmb4xECGzJK63dDiMJ5PkrgKX614YKaUtPpMtc2lz-WLBV-aorG2kDnV4vgEblNKyV2udMSCdwLVGR54GEaHLYAZ-0h5d3z9oJBj6rTCJYmw02aySyq_fr91T-nv_e5t92HWxI0pLZx9ARc5rsPODUbAGW7aiky_r8Nkdp2HvCqWouzBpaXvkh8YaGrvjP5SuioWhsRQyR0-z4hmxObL6zEsz6AWNnHoEcs0ESMe3aKBxa9memeshN6-GAuMDWWlNU3Rk5z6Ex35v1B14TmjBm2mIWniEq8gPFY21R0NtoZjwRErCRRAoSlVgGGGIEoZFVPmEY73vKRlkVBuA4YxF-Aiq88VcHgPCiWQxthNygn3BaEZZJCIlY5-JTDSgbiw5fSu5NKbOiA1ofrti6j6i5dRGD5FJFZ_8_dQpbBu3lvV4TagW-UqewSZ_L2bL_Nyujy9K47xt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gatSDD9CIou7Bo5W2u_ThjRAQIhKjiNya7T4iiYKBYqK_3t3tSkz04q1NtptmZtudb2fm-wDOOSECE4qdeiypQ3gknFQy1-Fhqm40REgNiWsv7Pej0Si-K8DFshdGCGGKz8SlvjS5fD5lC31UVtNShyo8X4HVOiG-l3drLXMGpO7Z5ujAUTDCtzlMz41rg-v7B4UFfffSj4MIa1U2o6Xy6wdsdpX2zv_eZxe2bfSIGrm796AgJiXY-sEpWIJ1U9PJ5mX4bA4bfusKNVBzqhPT5tAPDRU4tgeAqLHIpprIkosZehpnz4hOkFFonutBL2hg9SOQbSdAKsJFHYVc8wbNmRrSfdUkGB_IiGvqsiMz9z48tluDZsexUgvOWIHUzCFMBq4vw0j51FcWigiLhSCMe54MQ-lpThgiueYRlS5hWO18UnhpqAxAcUoDfADFyXQiDgHhWNAImwkZwS6nYRrSgAdSRC7lKa9AWVsyecvZNBJrxApUv12R2M9onpj4IdDJ4qO_nzqDjc7gtpf0uv2bY9jULs6r86pQzGYLcQJr7D0bz2enZq18AUFvv7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVA2E%3A+A+Conditional+Variational+Autoencoder+With+an+Adversarial+Training+Process+for+Hyperspectral+Imagery+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Xue&rft.au=Tan%2C+Kun&rft.au=Du%2C+Qian&rft.au=Chen%2C+Yu&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=58&rft.issue=8&rft.spage=5676&rft.epage=5692&rft_id=info:doi/10.1109%2FTGRS.2020.2968304&rft.externalDocID=8989966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon