CVA2E: A Conditional Variational Autoencoder With an Adversarial Training Process for Hyperspectral Imagery Classification
Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 58; číslo 8; s. 5676 - 5692 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Deep generative models such as the generative adversarial network (GAN) and the variational autoencoder (VAE) have obtained increasing attention in a wide variety of applications. Nevertheless, the existing methods cannot fully consider the inherent features of the spectral information, which leads to the applications being of low practical performance. In this article, in order to better handle this problem, a novel generative model named the conditional variational autoencoder with an adversarial training process (CVA 2 E) is proposed for hyperspectral imagery classification by combining variational inference and an adversarial training process in the spectral sample generation. Moreover, two penalty terms are added to promote the diversity and optimize the spectral shape features of the generated samples. The performance on three different real hyperspectral data sets confirms the superiority of the proposed method. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2020.2968304 |