Recast Subspace Pursuit-based Channel Estimation for Hybrid Beamforming NarrowBand Millimeter-Wave Massive MIMO Systems

Millimeter wave (mmWave) wireless communication systems with hybrid beamforming require reliable estimation of channel state information to perform optimally. Though the combined high-speed analog-to-digital converters (ADCs) and hybrid precoder/combiner architecture of this system ameliorate the pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Vehicular Technology Conference s. 1 - 6
Hlavní autor: Oyerinde, Olutayo Oyeyemi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2022
Témata:
ISSN:2577-2465
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Millimeter wave (mmWave) wireless communication systems with hybrid beamforming require reliable estimation of channel state information to perform optimally. Though the combined high-speed analog-to-digital converters (ADCs) and hybrid precoder/combiner architecture of this system ameliorate the problem of high-power consumption, they make channel estimation to become cumbersome. The paper proposed a channel estimation scheme that is based on a conventional subspace pursuit algorithm. The proposed estimator is named Recast Subspace Pursuit (ReSP)-based channel estimator. Besides taking advantage of the inherent sparsity in the mmWave Massive MIMO channel, the ReSP-based estimator also exploits the a-priori knowledge of channel matrix support-set as side information for the estimation procedure. Simulation results confirm that the proposed ReSP-based channel estimator can exhibit improved performance than some traditional and earlier proposed channel estimation schemes.
ISSN:2577-2465
DOI:10.1109/VTC2022-Spring54318.2022.9861018