Ultrasound Thyroid Nodule Segmentation Based On Multi-branch and Color Space Volume
Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary,...
Uložené v:
| Vydané v: | 2021 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC) s. 41 - 45 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary, thyroid nodule segmentation is a challenging task. In order to improve the precision of thyroid nodule segmentation, this paper presents an Ultrasound thyroid nodule segmentation algorithm based on multi-branch and color space volume. In this method, an image pyramid is constructed to compensate for the spatial information loss by convolutional and pooling operations. We use pretrained ResNet block as the Feature Encoder Module, a multi-branch convolutional fusion (MBCF) block is proposed to increase the receptive field and capture high-level spatial and semantic information. To further improve the segmentation performance, the color space volume transformation is used to highlight the contrast between the target area and the background in the data preprocessing part. Experimental results on an Ultrasound thyroid nodule segmentation dataset show that the proposed method performs well over the state-of-the-art methods. |
|---|---|
| AbstractList | Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary, thyroid nodule segmentation is a challenging task. In order to improve the precision of thyroid nodule segmentation, this paper presents an Ultrasound thyroid nodule segmentation algorithm based on multi-branch and color space volume. In this method, an image pyramid is constructed to compensate for the spatial information loss by convolutional and pooling operations. We use pretrained ResNet block as the Feature Encoder Module, a multi-branch convolutional fusion (MBCF) block is proposed to increase the receptive field and capture high-level spatial and semantic information. To further improve the segmentation performance, the color space volume transformation is used to highlight the contrast between the target area and the background in the data preprocessing part. Experimental results on an Ultrasound thyroid nodule segmentation dataset show that the proposed method performs well over the state-of-the-art methods. |
| Author | Zhou, Xiaogen Tong, Tong Xue, Ensheng Zheng, Weixin Gao, Qinquan Zheng, Haonan Li, Jing |
| Author_xml | – sequence: 1 givenname: Haonan surname: Zheng fullname: Zheng, Haonan organization: Fuzhou University,College of Physics and Information Engineering – sequence: 2 givenname: Xiaogen surname: Zhou fullname: Zhou, Xiaogen organization: Fuzhou University,College of Physics and Information Engineering – sequence: 3 givenname: Weixin surname: Zheng fullname: Zheng, Weixin organization: Fuzhou University,College of Physics and Information Engineering – sequence: 4 givenname: Jing surname: Li fullname: Li, Jing organization: Fuzhou University,College of Physics and Information Engineering – sequence: 5 givenname: Qinquan surname: Gao fullname: Gao, Qinquan organization: Fuzhou University,College of Physics and Information Engineering – sequence: 6 givenname: Tong surname: Tong fullname: Tong, Tong email: ttraveltong@gmail.com organization: Fuzhou University,College of Physics and Information Engineering – sequence: 7 givenname: Ensheng surname: Xue fullname: Xue, Ensheng email: Xuees01@163.com organization: Union Hospital Affiliated to Fujian Medical University |
| BookMark | eNotjN1KwzAYQCPohc49gSB5gdZ8SZu2l1qmFqa76Obt-NJ8cYU2Gf252NtbcFcHDpzzwG598MTYM4gYQBQvVVluqjJNpMxiKSTEQgjQN2xdZDlonSaLk-k9qw_dNOAYZm_5_nQZQmv5d7BzR7ym3578hFMbPH_DkSzfef41d1MbmQF9c-K4VGXowsDrMzbEf0I39_TI7hx2I62vXLHD-2Zffkbb3UdVvm6jFpSaIpUYjblVmUZqjHOEjctyQ8oZq3UhVaEzNC7HFJU2SZGhI5vkAgxADhbUij39f1siOp6HtsfhciyWVIBUf58rT0U |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCEIC54227.2021.00016 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665402125 1665402121 |
| EndPage | 45 |
| ExternalDocumentID | 9692012 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Health funderid: 10.13039/100018696 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i133t-34b6a8d376aecbffeacf78be3fbd66923967abf8a5a36b497afed4801b1181d13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790983300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:00:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-34b6a8d376aecbffeacf78be3fbd66923967abf8a5a36b497afed4801b1181d13 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9692012 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Nov. |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC) |
| PublicationTitleAbbrev | ICCEIC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7747544 |
| Snippet | Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 41 |
| SubjectTerms | Aerospace electronics color space volume Convolution Data preprocessing Image color analysis image pyramid Image segmentation multi-branch convolutional fusion Semantics Ultrasonic imaging Ultrasound thyroid nodule segmentation |
| Title | Ultrasound Thyroid Nodule Segmentation Based On Multi-branch and Color Space Volume |
| URI | https://ieeexplore.ieee.org/document/9692012 |
| WOSCitedRecordID | wos000790983300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zePCksom_ycGj2dY2S5qrZcNd5mCb7DaSfokbzFa6VvC_N0nLRPDirRSali_w3vfavu8h9KBDsCxIU8IlM4RSw4kENSAU6EBSyUHJOmyCT6fxaiVmLfR48MJorf3PZ7rnDv23fMjTyr0q6wsmLF9ZwD3inNVercb0GwxEf5Iko0kypGHIre4Lg57vZ36lpnjSGJ_-73ZnqPvjvsOzA6-co5bOOmi-3JWF3LsQJLzYfBX5FvA0h2qn8Vy_vTcOogw_WVYC_JJh76wlyuVmbLC0VyUW5go8txpZ41ePSV20HI8WyTNpAhHI1krJkkRUMRmDxQSpU2WMBU3DY6Ujo4DZh40E41KZWA5lxBQVXBoNbj6McvZSCKIL1M7yTF8inJooCIxTRBG4HsKuooYcjDAiANsiXaGOK8j6o555sW5qcf336Rt04ipee_RuUbssKn2HjtPPcrsv7v1GfQPQoZeJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1jCnpS2cTf5uDRbGubNc3VsrHhrINtsttI-iVuMFvpOsH_3iQriuDFWwjkB1_gvXxJXh5Cd8oHw4I0JUyEmlCqGREgO4QC7QgqGEixM5tgSRLN53xcQ_ffWhillHt8plq26O7yIU-39qiszUNu-MoA7p51zqrUWpXs1-vw9jCOe8O4S32fmczP91puR_PLN8XRRv_ofwMeo-aP_g6Pv5nlBNVU1kCT2bosxMbaIOHp8rPIV4CTHLZrhSfq9a3SEGX4wfAS4OcMO20tkdY5Y4mFaRUboCvwxGTJCr84VGqiWb83jQekskQgK5NMliSgMhQRGFQQKpVaG9jULJIq0BJCM9mAh0xIHYmuCEJJORNagf0hRlqBKXjBKapneabOEE514Hna5kQB2F2E6UV2GWiuuQcmvOeoYQOyeN_9erGoYnHxd_UtOhhMn0aL0TB5vESHNvo7xd4VqpfFVl2j_fSjXG2KG7doX-TjmtI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+2nd+International+Conference+on+Computer+Engineering+and+Intelligent+Control+%28ICCEIC%29&rft.atitle=Ultrasound+Thyroid+Nodule+Segmentation+Based+On+Multi-branch+and+Color+Space+Volume&rft.au=Zheng%2C+Haonan&rft.au=Zhou%2C+Xiaogen&rft.au=Zheng%2C+Weixin&rft.au=Li%2C+Jing&rft.date=2021-11-01&rft.pub=IEEE&rft.spage=41&rft.epage=45&rft_id=info:doi/10.1109%2FICCEIC54227.2021.00016&rft.externalDocID=9692012 |