Ultrasound Thyroid Nodule Segmentation Based On Multi-branch and Color Space Volume

Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC) s. 41 - 45
Hlavní autori: Zheng, Haonan, Zhou, Xiaogen, Zheng, Weixin, Li, Jing, Gao, Qinquan, Tong, Tong, Xue, Ensheng
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary, thyroid nodule segmentation is a challenging task. In order to improve the precision of thyroid nodule segmentation, this paper presents an Ultrasound thyroid nodule segmentation algorithm based on multi-branch and color space volume. In this method, an image pyramid is constructed to compensate for the spatial information loss by convolutional and pooling operations. We use pretrained ResNet block as the Feature Encoder Module, a multi-branch convolutional fusion (MBCF) block is proposed to increase the receptive field and capture high-level spatial and semantic information. To further improve the segmentation performance, the color space volume transformation is used to highlight the contrast between the target area and the background in the data preprocessing part. Experimental results on an Ultrasound thyroid nodule segmentation dataset show that the proposed method performs well over the state-of-the-art methods.
AbstractList Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound images have the characteristics of asymmetric irradiation, uneven appearance, low signal-to-noise ratio, low contrast and blurred boundary, thyroid nodule segmentation is a challenging task. In order to improve the precision of thyroid nodule segmentation, this paper presents an Ultrasound thyroid nodule segmentation algorithm based on multi-branch and color space volume. In this method, an image pyramid is constructed to compensate for the spatial information loss by convolutional and pooling operations. We use pretrained ResNet block as the Feature Encoder Module, a multi-branch convolutional fusion (MBCF) block is proposed to increase the receptive field and capture high-level spatial and semantic information. To further improve the segmentation performance, the color space volume transformation is used to highlight the contrast between the target area and the background in the data preprocessing part. Experimental results on an Ultrasound thyroid nodule segmentation dataset show that the proposed method performs well over the state-of-the-art methods.
Author Zhou, Xiaogen
Tong, Tong
Xue, Ensheng
Zheng, Weixin
Gao, Qinquan
Zheng, Haonan
Li, Jing
Author_xml – sequence: 1
  givenname: Haonan
  surname: Zheng
  fullname: Zheng, Haonan
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 2
  givenname: Xiaogen
  surname: Zhou
  fullname: Zhou, Xiaogen
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 3
  givenname: Weixin
  surname: Zheng
  fullname: Zheng, Weixin
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 4
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 5
  givenname: Qinquan
  surname: Gao
  fullname: Gao, Qinquan
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 6
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
  email: ttraveltong@gmail.com
  organization: Fuzhou University,College of Physics and Information Engineering
– sequence: 7
  givenname: Ensheng
  surname: Xue
  fullname: Xue, Ensheng
  email: Xuees01@163.com
  organization: Union Hospital Affiliated to Fujian Medical University
BookMark eNotjN1KwzAYQCPohc49gSB5gdZ8SZu2l1qmFqa76Obt-NJ8cYU2Gf252NtbcFcHDpzzwG598MTYM4gYQBQvVVluqjJNpMxiKSTEQgjQN2xdZDlonSaLk-k9qw_dNOAYZm_5_nQZQmv5d7BzR7ym3578hFMbPH_DkSzfef41d1MbmQF9c-K4VGXowsDrMzbEf0I39_TI7hx2I62vXLHD-2Zffkbb3UdVvm6jFpSaIpUYjblVmUZqjHOEjctyQ8oZq3UhVaEzNC7HFJU2SZGhI5vkAgxADhbUij39f1siOp6HtsfhciyWVIBUf58rT0U
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCEIC54227.2021.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665402125
1665402121
EndPage 45
ExternalDocumentID 9692012
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Health
  funderid: 10.13039/100018696
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-34b6a8d376aecbffeacf78be3fbd66923967abf8a5a36b497afed4801b1181d13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790983300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:00:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-34b6a8d376aecbffeacf78be3fbd66923967abf8a5a36b497afed4801b1181d13
PageCount 5
ParticipantIDs ieee_primary_9692012
PublicationCentury 2000
PublicationDate 2021-Nov.
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationTitle 2021 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC)
PublicationTitleAbbrev ICCEIC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7747544
Snippet Ultrasonic segmentation of thyroid nodules is an indispensable part of computer aided system and diagnosis of thyroid diseases. Due to the fact that ultrasound...
SourceID ieee
SourceType Publisher
StartPage 41
SubjectTerms Aerospace electronics
color space volume
Convolution
Data preprocessing
Image color analysis
image pyramid
Image segmentation
multi-branch convolutional fusion
Semantics
Ultrasonic imaging
Ultrasound thyroid nodule segmentation
Title Ultrasound Thyroid Nodule Segmentation Based On Multi-branch and Color Space Volume
URI https://ieeexplore.ieee.org/document/9692012
WOSCitedRecordID wos000790983300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zePCksom_ycGj2dY2S5qrZcNd5mCb7DaSfokbzFa6VvC_N0nLRPDirRSali_w3vfavu8h9KBDsCxIU8IlM4RSw4kENSAU6EBSyUHJOmyCT6fxaiVmLfR48MJorf3PZ7rnDv23fMjTyr0q6wsmLF9ZwD3inNVercb0GwxEf5Iko0kypGHIre4Lg57vZ36lpnjSGJ_-73ZnqPvjvsOzA6-co5bOOmi-3JWF3LsQJLzYfBX5FvA0h2qn8Vy_vTcOogw_WVYC_JJh76wlyuVmbLC0VyUW5go8txpZ41ePSV20HI8WyTNpAhHI1krJkkRUMRmDxQSpU2WMBU3DY6Ujo4DZh40E41KZWA5lxBQVXBoNbj6McvZSCKIL1M7yTF8inJooCIxTRBG4HsKuooYcjDAiANsiXaGOK8j6o555sW5qcf336Rt04ipee_RuUbssKn2HjtPPcrsv7v1GfQPQoZeJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1jCnpS2cTf5uDRbGubNc3VsrHhrINtsttI-iVuMFvpOsH_3iQriuDFWwjkB1_gvXxJXh5Cd8oHw4I0JUyEmlCqGREgO4QC7QgqGEixM5tgSRLN53xcQ_ffWhillHt8plq26O7yIU-39qiszUNu-MoA7p51zqrUWpXs1-vw9jCOe8O4S32fmczP91puR_PLN8XRRv_ofwMeo-aP_g6Pv5nlBNVU1kCT2bosxMbaIOHp8rPIV4CTHLZrhSfq9a3SEGX4wfAS4OcMO20tkdY5Y4mFaRUboCvwxGTJCr84VGqiWb83jQekskQgK5NMliSgMhQRGFQQKpVaG9jULJIq0BJCM9mAh0xIHYmuCEJJORNagf0hRlqBKXjBKapneabOEE514Hna5kQB2F2E6UV2GWiuuQcmvOeoYQOyeN_9erGoYnHxd_UtOhhMn0aL0TB5vESHNvo7xd4VqpfFVl2j_fSjXG2KG7doX-TjmtI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+2nd+International+Conference+on+Computer+Engineering+and+Intelligent+Control+%28ICCEIC%29&rft.atitle=Ultrasound+Thyroid+Nodule+Segmentation+Based+On+Multi-branch+and+Color+Space+Volume&rft.au=Zheng%2C+Haonan&rft.au=Zhou%2C+Xiaogen&rft.au=Zheng%2C+Weixin&rft.au=Li%2C+Jing&rft.date=2021-11-01&rft.pub=IEEE&rft.spage=41&rft.epage=45&rft_id=info:doi/10.1109%2FICCEIC54227.2021.00016&rft.externalDocID=9692012