On achievability of linear source coding over finite rings

We propose using linear mappings over finite rings as encoders in the Slepian-Wolf and the source coding for computing problems. It is known that the arithmetic of many finite rings is substantially easier to implement than the one of finite fields. Hence, one of the advantages of using linear mappi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / IEEE International Symposium on Information Theory s. 1984 - 1988
Hlavní autoři: Sheng Huang, Skoglund, Mikael
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2013
Témata:
ISSN:2157-8095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose using linear mappings over finite rings as encoders in the Slepian-Wolf and the source coding for computing problems. It is known that the arithmetic of many finite rings is substantially easier to implement than the one of finite fields. Hence, one of the advantages of using linear mappings over rings, instead of its field counterparts, is reducing implementation complexity. More importantly, the ring version dominates the field version in terms of achieving strictly better coding rates with strictly smaller alphabet size in the source coding for computing problem [1]. This paper is dedicated to proving an achievability theorem of linear source coding over finite rings in the Slepian-Wolf problem. This result includes those given by Elias [2] and Csiszár [3] saying that linear coding over finite fields is optimal, i.e. achieves the Slepian-Wolf region. Although the optimality issue remains open, it has been verified in various scenarios including particularly many cases use non-field rings [1], [4].
AbstractList We propose using linear mappings over finite rings as encoders in the Slepian-Wolf and the source coding for computing problems. It is known that the arithmetic of many finite rings is substantially easier to implement than the one of finite fields. Hence, one of the advantages of using linear mappings over rings, instead of its field counterparts, is reducing implementation complexity. More importantly, the ring version dominates the field version in terms of achieving strictly better coding rates with strictly smaller alphabet size in the source coding for computing problem [1]. This paper is dedicated to proving an achievability theorem of linear source coding over finite rings in the Slepian-Wolf problem. This result includes those given by Elias [2] and Csiszár [3] saying that linear coding over finite fields is optimal, i.e. achieves the Slepian-Wolf region. Although the optimality issue remains open, it has been verified in various scenarios including particularly many cases use non-field rings [1], [4].
Author Sheng Huang
Skoglund, Mikael
Author_xml – sequence: 1
  surname: Sheng Huang
  fullname: Sheng Huang
  email: sheng.huang@ee.kth.se
  organization: Sch. of Electr. Eng., Commun. Theor. Lab., Stockholm, Sweden
– sequence: 2
  givenname: Mikael
  surname: Skoglund
  fullname: Skoglund, Mikael
  email: skoglund@ee.kth.se
  organization: Sch. of Electr. Eng., Commun. Theor. Lab., Stockholm, Sweden
BookMark eNotj8tKAzEUQCNUsK39AHGTH5jxJjczSdxJ8TFQ6MK6LpnMjUbGjCS10L9XsKsDZ3HgLNgsTYkYuxFQCwH2rnvtdrUEgXXbSmg0XrCV1UYobS0o1aoZm0vR6MqAba7YopRPANQIcs7ut4k7_xHp6Po4xsOJT4GPMZHLvEw_2RP30xDTO5-OlHmIKR6I5z9RrtllcGOh1ZlL9vb0uFu_VJvtc7d-2FRRSCMq7VRvVSsMaj8MCrUJIJrg-n6Q0mEIHsH5QBrJSy_BGWlbo1XAQH4wiEt2-9-NRLT_zvHL5dP-vIq_yB1JiQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISIT.2013.6620573
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479904464
1479904465
EndPage 1988
ExternalDocumentID 6620573
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i1281-7a4b9461837cdd4378f015fabbd22a3ffc30acfe73ec2c20a8296874f3fecd833
IEDL.DBID RIE
ISSN 2157-8095
IngestDate Wed Aug 27 04:33:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1281-7a4b9461837cdd4378f015fabbd22a3ffc30acfe73ec2c20a8296874f3fecd833
PageCount 5
ParticipantIDs ieee_primary_6620573
PublicationCentury 2000
PublicationDate 2013-July
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-July
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.5327165
Snippet We propose using linear mappings over finite rings as encoders in the Slepian-Wolf and the source coding for computing problems. It is known that the...
SourceID ieee
SourceType Publisher
StartPage 1984
SubjectTerms Context
Decoding
Polynomials
Random variables
Source coding
Title On achievability of linear source coding over finite rings
URI https://ieeexplore.ieee.org/document/6620573
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61iIGpQIt4ywMjaVPbsR1WREWXUokidasc2yd1SVBfEv-eXJIWIbGwWR5O1tnns---uw_gwSC3sdchsog6kkFglJnYRorbBFPhE576imxCTyZmPk-nLXg81MKEECrwWejTsMrl-8JtKVQ2UIpT_742tLVWda3W_tYV5UmljEHpwejWTZMmgzmM08H4fTwjEJfoNwJ-MalUjmTU-d8STqH3U5HHpgdfcwatkJ9DZ0_JwBoL7cLTW84IHhl2df_tL1Ygo5ekXbE6Ts9cQSIYQTcZLunJySi2t-7Bx-hl9vwaNfQI0ZLSX5G2MkulKm1SO--l0AZL3442yzznViA6EVuHQYvguOOxNTxVRksUGJw3QlzAUV7k4RIYZomQfugFNbvXytvSTrPyJyZUzC1aeQVdUsXis-6AsWi0cP339A2c8Io0gkCtt3C0WW3DHRy73Wa5Xt1X2_YNXYGX7w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQILTgA3xJgeOdOuStGm5IqZNjDGJIe02pUks7dKivST-PXXbDSFx4RblYEVOHCf2Z38A9xFy7VvlPI2oPOkEeknkay_kOsBY2IDHtiCbUKNRNJ3G4xo87GphnHMF-My1aVjk8m1m1hQq64Qhp_59e7AfSMn9slpre--K_KxSziD3YXTvxkGVw-z6cWfwPpgQjEu0KxG_uFQKV9Jr_G8Rx9D6qclj4523OYGaS0-hsSVlYJWNNuHxLWUEkHSbsgP3F8uQ0VtSL1gZqWcmIxGMwJsM5_ToZBTdW7bgo_c8eep7FUGCN6cEmKe0TGIZ5lapjLVSqAhz7446SSznWiAa4WuDTglnuOG-jngcRkqiQGdsJMQZ1NMsdefAMAmEtF0rqN29Cq3OLTXJ_2Ii9LlGLS-gSaqYfZY9MGaVFi7_nr6Dw_7kdTgbDkYvV3DECwoJgrheQ321WLsbODCb1Xy5uC228Bt4CJs2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=On+achievability+of+linear+source+coding+over+finite+rings&rft.au=Sheng+Huang&rft.au=Skoglund%2C+Mikael&rft.date=2013-07-01&rft.pub=IEEE&rft.issn=2157-8095&rft.spage=1984&rft.epage=1988&rft_id=info:doi/10.1109%2FISIT.2013.6620573&rft.externalDocID=6620573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon