Application of improved genetic algorithm in the evaluation system of enterprise

In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and genetic operators of genetic algorithm after the study of genetic algorithm in theory and then proposes a multi-objective function optimization...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) s. 1 - 4
Hlavní autori: Han Xiao-bing, Tian Yu-tong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2015
Predmet:
ISBN:1479989185, 9781479989188
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and genetic operators of genetic algorithm after the study of genetic algorithm in theory and then proposes a multi-objective function optimization algorithm. By experimental simulation, it is concluded that, compared with the ordinary genetic algorithm, the average fitness value of the improved algorithm has increased, moreover the average number of iterations and the time consumption has reduced. What's more, when the improved algorithm is applied to the enterprise appraisal, it is proved by experiments that the advantage of low repetition rate to realize the intelligent test paper, the success rate of test paper is 100%, and the repetition rate is 0.9%. Thus the superiority of the improved algorithm is reflected very well.
ISBN:1479989185
9781479989188
DOI:10.1109/ICSPCC.2015.7338838