Application of improved genetic algorithm in the evaluation system of enterprise

In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and genetic operators of genetic algorithm after the study of genetic algorithm in theory and then proposes a multi-objective function optimization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) s. 1 - 4
Hlavní autoři: Han Xiao-bing, Tian Yu-tong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2015
Témata:
ISBN:1479989185, 9781479989188
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and genetic operators of genetic algorithm after the study of genetic algorithm in theory and then proposes a multi-objective function optimization algorithm. By experimental simulation, it is concluded that, compared with the ordinary genetic algorithm, the average fitness value of the improved algorithm has increased, moreover the average number of iterations and the time consumption has reduced. What's more, when the improved algorithm is applied to the enterprise appraisal, it is proved by experiments that the advantage of low repetition rate to realize the intelligent test paper, the success rate of test paper is 100%, and the repetition rate is 0.9%. Thus the superiority of the improved algorithm is reflected very well.
AbstractList In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and genetic operators of genetic algorithm after the study of genetic algorithm in theory and then proposes a multi-objective function optimization algorithm. By experimental simulation, it is concluded that, compared with the ordinary genetic algorithm, the average fitness value of the improved algorithm has increased, moreover the average number of iterations and the time consumption has reduced. What's more, when the improved algorithm is applied to the enterprise appraisal, it is proved by experiments that the advantage of low repetition rate to realize the intelligent test paper, the success rate of test paper is 100%, and the repetition rate is 0.9%. Thus the superiority of the improved algorithm is reflected very well.
Author Tian Yu-tong
Han Xiao-bing
Author_xml – sequence: 1
  surname: Han Xiao-bing
  fullname: Han Xiao-bing
  organization: Commun. & Inf. Eng. Coll., Xi'an Univ. of Sci. & Technol., Xi'an, China
– sequence: 2
  surname: Tian Yu-tong
  fullname: Tian Yu-tong
  organization: Commun. & Inf. Eng. Coll., Xi'an Univ. of Sci. & Technol., Xi'an, China
BookMark eNo9j8tqwzAURFXaLpqkX5CNfsCurh61tAymj0CggTbrIEtXicCWja0G8vdtSehqGJgzw8zIXeoTErIEVgIw87SuP7d1XXIGqqyE0FroGzIDWRmjDWfV7b8BrR7IdjUMbXQ2xz7RPtDYDWN_Qk8PmDBHR2176MeYjx2NieYjUjzZ9vuSn85Txu4Pw5RxHMY44YLcB9tO-HjVOdm9vnzV78Xm421drzZFBC5yEZxhqKyynnlhpZCNC8_aadToASolmfCN4c5gw8AF5Fo00ASlZYXOGSPmZHnpjYi4_53u7HjeXx-LH3LwUGA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSPCC.2015.7338838
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1479989207
9781479989201
EndPage 4
ExternalDocumentID 7338838
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-fc90e5a5ad0d3a434bcf68c8e8ed1175403db92c9eb01cfe283b1bf5847ecc993
IEDL.DBID RIE
ISBN 1479989185
9781479989188
IngestDate Wed Jun 26 19:24:56 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-fc90e5a5ad0d3a434bcf68c8e8ed1175403db92c9eb01cfe283b1bf5847ecc993
PageCount 4
ParticipantIDs ieee_primary_7338838
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)
PublicationTitleAbbrev ICSPCC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5715702
Snippet In this paper, in order to solve the problem of intelligent test paper, the author puts forward the improvement on chromosome coding, mutation algorithm and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Artificial intelligence
Biological cells
chromosome coding
Encoding
Genetic algorithms
intelligent test paper
multi-objective function optimization
Sociology
Statistics
The improved genetic algorithm
Title Application of improved genetic algorithm in the evaluation system of enterprise
URI https://ieeexplore.ieee.org/document/7338838
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4qEnP1rxmz14NG1iNtndowSLXkpAhd5KdneiAU2kpv5-Z5PYKnjxlgQ2hNkh82Zn3huAy8BQYKC_nBdaQQlKpCNPcyM9h07JXbSKLW-GTYj5XC4WKu3B1YYLg4hN8xlO3GVTy7eVWbujsqmgfEqGsg99IeIfXC1BOYOiwPMt4dTdy05lKPDV9D55SJPEtXJFk-41v-apNOFktvu_D9mD8ZaXx9JNxNmHHpYHMHR4sZVbHkF6sy1IsypnRXNmgJaRnzi6Isten6tVUb-8saJkBP7YVu6btarObhm2rYjFB47haXb7mNx53dAEr6AgVHu5UT5GWZRZ34YZD7k2eSyNRInWyXJyP7RaXRuF2g9MjgQvdKBzVy2l3SS0cgiDsirxCBg6EpzmBPB0xMM4VoLcznF3c8xkhsExjJxplu-tLsays8rJ349PYeis3_ZnncGgXq3xHHbMJ5loddFs5hcKV58a
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFezJj1b8dg8eTZs0m2T3KMHSYi0BK_RWspuJBjSR2vr7nU1iq-DFWxLYEGaGzJvdeW8Arh1NiYH-cpabBFSgeMqzFNfCMuiUwkVJP-HlsIlgMhGzmYwacLPmwiBi2XyGXXNZnuUnhV6ZrbJeQPWUcMUWbHuc9-0fbK2AqgZJqedbxKm-F7XOkGPL3ih8jMLQNHN53fpFvyaqlAllsPe_T9mHzoaZx6J1zjmABuaH0DKIsRJcbkN0uzmSZkXKsnLXABNGkWIIiyx-fS4W2fLljWU5I_jHNoLfrNJ1NsuwakbMPrADT4O7aTi06rEJVkZpaGmlWtroxV6c2Ikbc5crnfpCCxSYGGFObruJkn0tUdmOTpEAhnJUas5LyZ-EV46gmRc5HgNDQ4NTnCCe8rjr-zKgwDPs3RRjEaNzAm1jmvl7pYwxr61y-vfjK9gdTh_G8_Focn8GLeOJqlvrHJrLxQovYEd_krkWl6VjvwB_uKJh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Signal+Processing%2C+Communications+and+Computing+%28ICSPCC%29&rft.atitle=Application+of+improved+genetic+algorithm+in+the+evaluation+system+of+enterprise&rft.au=Han+Xiao-bing&rft.au=Tian+Yu-tong&rft.date=2015-09-01&rft.pub=IEEE&rft.isbn=1479989185&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICSPCC.2015.7338838&rft.externalDocID=7338838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479989188/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479989188/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479989188/sc.gif&client=summon&freeimage=true