Android malware detection: An eigenspace analysis approach

The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 Science and Information Conference (SAI) s. 1236 - 1242
Hlavní autoři: Yerima, Suleiman Y., Sezer, Sakir, Muttik, Igor
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization of Android applications. Empirical evaluation with a dataset of real malware and benign samples show that detection rate of over 96% with a very low false positive rate is achievable using the proposed method.
AbstractList The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization of Android applications. Empirical evaluation with a dataset of real malware and benign samples show that detection rate of over 96% with a very low false positive rate is achievable using the proposed method.
Author Muttik, Igor
Yerima, Suleiman Y.
Sezer, Sakir
Author_xml – sequence: 1
  givenname: Suleiman Y.
  surname: Yerima
  fullname: Yerima, Suleiman Y.
  email: s.yerima@qub.ac.uk
  organization: Centre for Secure Inf. Technol. (CSIT), Queen's Univ. Belfast, Belfast, UK
– sequence: 2
  givenname: Sakir
  surname: Sezer
  fullname: Sezer, Sakir
  email: s.sezer@qub.ac.uk
  organization: Centre for Secure Inf. Technol. (CSIT), Queen's Univ. Belfast, Belfast, UK
– sequence: 3
  givenname: Igor
  surname: Muttik
  fullname: Muttik, Igor
  email: mig@mcafee.com
  organization: McAfee Labs. (Part of Intel Security), Aylesbury, UK
BookMark eNotz8tKAzEUgOEIurDVveAmLzDjyW2SdDcUL4WCC3VdTpMTDUwzQ2ZA-vYu7OrfffCv2HUZCzH2IKAVAvzTR79rJQjTWqmsAnnFVkJb753RVt2yTV9iHXPkJxx-sRKPtFBY8lg2vC-c8jeVecJAHAsO5znPHKepjhh-7thNwmGm-0vX7Ovl-XP71uzfX3fbft9kIdXSJA8gkpUawdgudGhUEEg2SmX8UbmEXgSjXQdRemuO4JxGEyEi2BQsqjV7_HczER2mmk9Yz4fLjvoD9bxDBQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SAI.2015.7237302
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479985473
9781479985470
EndPage 1242
ExternalDocumentID 7237302
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-f9001f724a0576c6a53c1ae7d2359b38fa91c54860d2975b0884a5d0da07fc7a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:29 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-f9001f724a0576c6a53c1ae7d2359b38fa91c54860d2975b0884a5d0da07fc7a3
PageCount 7
ParticipantIDs ieee_primary_7237302
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 Science and Information Conference (SAI)
PublicationTitleAbbrev SAI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7102364
Snippet The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques,...
SourceID ieee
SourceType Publisher
StartPage 1236
SubjectTerms Accuracy
Android
Androids
eigenspace
eigenvectors
Feature extraction
Humanoid robots
Machine learning algorithms
Malware
malware detection
mobile security
statistical machine learning
Training
Title Android malware detection: An eigenspace analysis approach
URI https://ieeexplore.ieee.org/document/7237302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXf5ODR7WPz2vRWxKKXUlCht5KdzMKC7sq61b9vst1WBC_eQkgIk8d8IflmPoAbkyh0WRLYDcZEgqSNEkKKOOkUuVRCY9qITej5PFkuzaIDt7tYGCJqyGc0CMXmL9-VuA5PZUMdc78hvcPd01ptYrW2P48jM3yaPgaqlhy0zX7ppTRwMTv830BH0P-Ju2OLHaIcQ4eKHkwC57DMHXuzr1-2IuaobvhTxYRNC0YhnaZ3C76rbROMsG2i8D68zO6f7x6iVvEgyj2C1FFmPGpkOhbWX6MUKis5ji1pF3NpUp5k1oxRBt0oFyJiU-8ihJVu5OxIZ6gtP4FuURZ0CkyYNCgGxgIpFtJxg6T82bYys5JQiTPoBbtX75ukFqvW5PO_qy_gIEzthqd6Cd26WtMV7ONnnX9U181KfANOc4uk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KFfSk0orf5uDRbbebZLPprYjSYi0FK_RWZpNZKOhW6lb_vsl2WxG8eAshIUw-5oXkzTyAG53ExmaJZzdoHQiSGCRkKOCkUsNlLJRJS7EJNRol06ke1-B2GwtDRCX5jFq-WP7l24VZ-aeytoq425DO4e5IIaJwHa21-XsMdfu5N_BkLdmqGv5STCkB4-Hgf0MdQvMn8o6Nt5hyBDXKG9D1rMPF3LI3fP3CJTFLRcmgyruslzPyCTWdY3BdsUoxwjapwpvw8nA_uesHleZBMHcYUgSZdriRqUigu0jFJkbJTQdJ2YhLnfIkQ90x0itHWR8TmzonIVDa0GKoMqOQH0M9X-R0Akzo1GsGRsJQJKTl2lDsTjfKDCWZWJxCw9s9e1-ntZhVJp_9XX0Ne_3J03A2HIwez2HfT_OatXoB9WK5okvYNZ_F_GN5Va7KN8RKjus
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+Science+and+Information+Conference+%28SAI%29&rft.atitle=Android+malware+detection%3A+An+eigenspace+analysis+approach&rft.au=Yerima%2C+Suleiman+Y.&rft.au=Sezer%2C+Sakir&rft.au=Muttik%2C+Igor&rft.date=2015-07-01&rft.pub=IEEE&rft.spage=1236&rft.epage=1242&rft_id=info:doi/10.1109%2FSAI.2015.7237302&rft.externalDocID=7237302