Upper bound on list-decoding radius of binary codes

Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with multiplicity at most L. For odd L ≥ 3 an asymptotic upper bound on the rate of any such packing is proven. The resulting bound improves the b...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / IEEE International Symposium on Information Theory pp. 2231 - 2235
Main Author: Polyanskiy, Yury
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 01.06.2015
Subjects:
ISSN:2157-8095, 2157-8117
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with multiplicity at most L. For odd L ≥ 3 an asymptotic upper bound on the rate of any such packing is proven. The resulting bound improves the best known bound (due to Blinovsky' 1986) for rates below a certain threshold. The method is a superposition of the linear- programming idea of Ashikhmin, Barg and Litsyn (that was used previously to improve the estimates of Blinovsky for L = 2) and a Ramsey-theoretic technique of Blinovsky. As an application it is shown that for all odd L the slope of the rate-radius tradeoff is zero at zero rate.
AbstractList Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with multiplicity at most L. For odd L greater than or equal to 3 an asymptotic upper bound on the rate of any such packing is proven. The resulting bound improves the best known bound (due to Blinovsky'1986) for rates below a certain threshold. The method is a superposition of the linear- programming idea of Ashikhmin, Barg and Litsyn (that was used previously to improve the estimates of Blinovsky for L = 2) and a Ramsey-theoretic technique of Blinovsky. As an application it is shown that for all odd L the slope of the rate-radius tradeoff is zero at zero rate.
Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with multiplicity at most L. For odd L ≥ 3 an asymptotic upper bound on the rate of any such packing is proven. The resulting bound improves the best known bound (due to Blinovsky' 1986) for rates below a certain threshold. The method is a superposition of the linear- programming idea of Ashikhmin, Barg and Litsyn (that was used previously to improve the estimates of Blinovsky for L = 2) and a Ramsey-theoretic technique of Blinovsky. As an application it is shown that for all odd L the slope of the rate-radius tradeoff is zero at zero rate.
Author Polyanskiy, Yury
Author_xml – sequence: 1
  givenname: Yury
  surname: Polyanskiy
  fullname: Polyanskiy, Yury
  organization: Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA
BookMark eNo1UD1PwzAUNKhItKU_ALF4ZEnxs-O8eEQVH5UqMdDOkZ28IKPUDnEz8O-J1DLd6XQ63d2CzUIMxNg9iDWAME_bz-1-LQXoNcpSllpesZXBEvICFaLI4ZrNJWjMSgCc_XNh9C1bpPQthEIl5JypQ9_TwF0cQ8Nj4J1Pp6yhOjY-fPHBNn5MPLbc-WCHXz7plO7YTWu7RKsLLtnh9WW_ec92H2_bzfMu8yDVKSMAU5S6qCknV5BB25hWadcIlNLUJThZ2Lylwglbom1b62pNSM6JHGut1JI9nnP7If6MlE7V0aeaus4GimOqYBoqMUctJuvD2eqJqOoHf5zaVpdr1B8Qu1a4
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ISIT.2015.7282852
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467377041
146737704X
EISSN 2157-8117
EndPage 2235
ExternalDocumentID 7282852
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i123t-e1196856ce4eb6e97ad9f35bd07229c81b26a4fe6b0a87affabc5e7ebb047c533
IEDL.DBID RIE
ISSN 2157-8095
IngestDate Fri Jul 11 09:17:40 EDT 2025
Wed Aug 27 02:42:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-e1196856ce4eb6e97ad9f35bd07229c81b26a4fe6b0a87affabc5e7ebb047c533
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770274750
PQPubID 23500
PageCount 5
ParticipantIDs ieee_primary_7282852
proquest_miscellaneous_1770274750
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.5700763
Snippet Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2231
SubjectTerms Asymptotic properties
Binary codes
Combinatorial coding theory
converse bounds
Decoding
Estimates
Information theory
Joints
list-decoding
Polynomials
Programming
Slopes
Thresholds
Tin
Upper bound
Upper bounds
Title Upper bound on list-decoding radius of binary codes
URI https://ieeexplore.ieee.org/document/7282852
https://www.proquest.com/docview/1770274750
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYo6tCJtlD1LVfqWINJ4jieq6KyIKSCxBb5cZaQqgQR0t_fcwh0aJdu8eAovrPvvsvd5yPkGUG3kQ4kSyMfswScYsYLySxE1ikee21802xCzmbZaqXmHfJy5MIAQFN8BsPw2OTyXWnr8KtsJEN8INDgnkgp91ytg9WNcaeGjAF6sGB1lWgzmGOuRtOP6SIUcYlh-4K2k8ov89v4lEnvf19zTgY_5Dw6P7qdC9KB4pL0Dt0ZaHtY-yRebjY4NqFvEi0L-okKZQ6jzTCNbrVb1xUtPTUNI5cGbns1IMvJ2-L1nbUtEtgaXc6OwRhPUCZSCwmYFJTUTvlYGMdlFCmLmDRKdeIhNVxnUnsUvRUgwRieSItQ74p0i7KAa0Kt9zaJEXDzTCNKiVFJGqOZVDmphXX8hvSDDPLN_haMvF3-DXk6CDHHnRnSDbqAsq7ysZRNzCv47d9T78hZ0Mq-8OqedHfbGh7Iqf3aravtY6Peb73jpgk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8ImugTKhjxsyY-Ohjbuq7PRgIRCYmQ8Lb045qQmI0w5t_vdQx80Bff1ocu611797vd_XqEPCHoVtwA9-LAhl4ERnjKMu5pCLQRfmilslWzCT6dJsulmDXI84ELAwBV8Rn03GOVyze5Lt2vsj538QFDg3vEoigY7Nhae7sb4l51OQP0Yc7uClbnMAe-6I8_xnNXxsV69SvqXiq_DHDlVYat_33PGen80PPo7OB4zkkDsgvS2vdnoPVxbZNwsV7jWLnOSTTP6Ceq1DMYb7ppdCPNqixobqmqOLnUsduLDlkMX-cvI69ukuCt0OlsPRjgGUpYrCECFYPg0ggbMmV8HgRCIyoNYhlZiJUvEy4tCl8z4KCUH3GNYO-SNLM8gytCtbU6ChFy-4lEnBKimiTGM7EwXDJt_C5pOxmk6909GGm9_C553Asxxb3pEg4yg7ws0gHnVdTL_Ou_pz6Qk9H8fZJOxtO3G3LqNLQrw7olze2mhDtyrL-2q2JzX6n6G5CfqVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Upper+bound+on+list-decoding+radius+of+binary+codes&rft.au=Polyanskiy%2C+Yury&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=2157-8095&rft.spage=2231&rft.epage=2235&rft_id=info:doi/10.1109%2FISIT.2015.7282852&rft.externalDocID=7282852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon