An efficient vertical-Apriori Mapreduce algorithm for frequent item-set mining

Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. Wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) s. 108 - 112
Hlavní autoři: Dawei Sun, Lee, Vincent Cs, Burstein, Frada, Haghighi, Pari Delir
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. When confronting with larger data size, which is inevitable for todays organisation, most if not all algorithms performed not as efficient as required to meet the real time big data driven decision making needs. We therefore attempt to solve these efficiency problems by proposing a VAMR (Vertical-Apriori Map-reduce) algorithm. VAMR is based on data attribute identifier which is exploited as capability metric for mining frequency item-set from large dataset in a single node (for example in a single site enterprise) that has no distributed and parallel computing system environment. Our evaluations using synthetic datasets and data from public repository suggest that VAMR algorithm can offer superior efficiency in mining frequent item-sets from large transaction dataset.
AbstractList Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. When confronting with larger data size, which is inevitable for todays organisation, most if not all algorithms performed not as efficient as required to meet the real time big data driven decision making needs. We therefore attempt to solve these efficiency problems by proposing a VAMR (Vertical-Apriori Map-reduce) algorithm. VAMR is based on data attribute identifier which is exploited as capability metric for mining frequency item-set from large dataset in a single node (for example in a single site enterprise) that has no distributed and parallel computing system environment. Our evaluations using synthetic datasets and data from public repository suggest that VAMR algorithm can offer superior efficiency in mining frequent item-sets from large transaction dataset.
Author Haghighi, Pari Delir
Burstein, Frada
Lee, Vincent Cs
Dawei Sun
Author_xml – sequence: 1
  surname: Dawei Sun
  fullname: Dawei Sun
  email: dawei.sun@monash.edu
  organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia
– sequence: 2
  givenname: Vincent Cs
  surname: Lee
  fullname: Lee, Vincent Cs
  email: vincent.cs.lee@monash.edu
  organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia
– sequence: 3
  givenname: Frada
  surname: Burstein
  fullname: Burstein, Frada
  email: burstein@monash.edu
  organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia
– sequence: 4
  givenname: Pari Delir
  surname: Haghighi
  fullname: Haghighi, Pari Delir
  email: pari.delir.haghighi@monash.edu
  organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia
BookMark eNotj8tOwzAURI0ECyj9Adj4Bxz8yuMuo6hApEI3ZV259nWxlDjFdZH4e4LoaqQZndHMHbmOU0RCHgQvhODw1Hf9qi0kF2VRK6U5qCuyhLoRugZoVAPVLXlvI0Xvgw0YM_3GlIM1A2uPKUwp0DdzTOjOFqkZDrORP0fqp0R9wq_zHxEyjuyEmY4hhni4JzfeDCdcXnRBPp5X2-6VrTcvfdeuWRBSZeZKLYwq0XGLzteVRcH5XoKTOCdNzSsN3krwXGpUpdPoHO69bEoQlROgFuTxvzcg4m4eO5r0s7u8VL8t2UyG
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA.2015.7334093
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479983896
1479983896
EndPage 112
ExternalDocumentID 7334093
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-d541a35ed0cedf76ce100b29d2e541870649fc29f024e35d4eddebf285916d193
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:32 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-d541a35ed0cedf76ce100b29d2e541870649fc29f024e35d4eddebf285916d193
PageCount 5
ParticipantIDs ieee_primary_7334093
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)
PublicationTitleAbbrev ICIEA
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5816941
Snippet Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from...
SourceID ieee
SourceType Publisher
StartPage 108
SubjectTerms Apriori
attribute identifier
Big data
Dairy products
Data mining
Distributed databases
Frequent item-set mining
Generators
Itemsets
Mapreduce
Sugar
Title An efficient vertical-Apriori Mapreduce algorithm for frequent item-set mining
URI https://ieeexplore.ieee.org/document/7334093
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB1UeuipLVr6TQ49Nrrubja7x0WUCq14aMGbxGTSLtRV1rW_v5NoLYVeeguThMAL5E2SmTcA9zqSsRax5qFUKSc-Rq6I5rkMdJgsyOG16EVcn-Rkks5m2bQBD4dcGET0wWfYdU3_l29Weuueynoyiug6EjWhKWWyy9X6zoMJst54MB7mLlhLdPcDf1VM8YQxOvnfUqfQ-cm8Y9MDp5xBA8s2TPKSoZd6oDnMF1AmZHm-ropVVbBnta6cACsy9fFGhvp9ycgVZbbyYdI1c--zfIM1W_pqEB14HQ1fBo98XweBF8QrNTci7itC0QQajZWJxn4QLMLMhEg97qMyzqwOM0t8i5EwMdKZtbBemi4x5KGdQ6tclXgBLDB0QUmEkH1MyXWSyhCfW6OsjXSaCnUJbYfFfL2TupjvYbj623wNxw7uXeTUDbTqaou3cKQ_62JT3fn9-QLJqZPb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBoz42YNHC8vudrt7JAQCETYcMOFGSjvVTWQhy-Lvd1oQY-LFWzNt0-Q16Zu2M28IeVKBCBUPFfOFjBnyMTCJNM-Ep_xogQ6vASfiOhJpGs9myaRCng-5MADggs-gaZvuL1-v1NY-lbVEEOB1JDgixzwMfW-XrfWdCeMlrWF32OvYcC3e3A_9VTPFUUb__H-LXZD6T-4dnRxY5ZJUIK-RtJNTcGIPOIe6EsqILeusi2xVZHQs14WVYAUqP97QUL4vKTqj1BQuULqk9oWWbaCkS1cPok5e-71pd8D2lRBYhsxSMs3DtkQctadAGxEpaHvewk-0D9hjvyrDxCg_Mci4EHAdAp5aC-PE6SKNPtoVqearHK4J9TReUSLORRtidJ6E1MjoRktjAhXHXDZIzWIxX-_ELuZ7GG7-Nj-S08F0PJqPhunLLTmz0O_iqO5ItSy2cE9O1GeZbYoHt1dfqNmXIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+10th+Conference+on+Industrial+Electronics+and+Applications+%28ICIEA%29&rft.atitle=An+efficient+vertical-Apriori+Mapreduce+algorithm+for+frequent+item-set+mining&rft.au=Dawei+Sun&rft.au=Lee%2C+Vincent+Cs&rft.au=Burstein%2C+Frada&rft.au=Haghighi%2C+Pari+Delir&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=108&rft.epage=112&rft_id=info:doi/10.1109%2FICIEA.2015.7334093&rft.externalDocID=7334093