An efficient vertical-Apriori Mapreduce algorithm for frequent item-set mining
Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. Wh...
Uloženo v:
| Vydáno v: | 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) s. 108 - 112 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. When confronting with larger data size, which is inevitable for todays organisation, most if not all algorithms performed not as efficient as required to meet the real time big data driven decision making needs. We therefore attempt to solve these efficiency problems by proposing a VAMR (Vertical-Apriori Map-reduce) algorithm. VAMR is based on data attribute identifier which is exploited as capability metric for mining frequency item-set from large dataset in a single node (for example in a single site enterprise) that has no distributed and parallel computing system environment. Our evaluations using synthetic datasets and data from public repository suggest that VAMR algorithm can offer superior efficiency in mining frequent item-sets from large transaction dataset. |
|---|---|
| AbstractList | Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from transactional dataset have been proposed in the literature. Most of these algorithms are, however, evaluated offline on relatively small data size. When confronting with larger data size, which is inevitable for todays organisation, most if not all algorithms performed not as efficient as required to meet the real time big data driven decision making needs. We therefore attempt to solve these efficiency problems by proposing a VAMR (Vertical-Apriori Map-reduce) algorithm. VAMR is based on data attribute identifier which is exploited as capability metric for mining frequency item-set from large dataset in a single node (for example in a single site enterprise) that has no distributed and parallel computing system environment. Our evaluations using synthetic datasets and data from public repository suggest that VAMR algorithm can offer superior efficiency in mining frequent item-sets from large transaction dataset. |
| Author | Haghighi, Pari Delir Burstein, Frada Lee, Vincent Cs Dawei Sun |
| Author_xml | – sequence: 1 surname: Dawei Sun fullname: Dawei Sun email: dawei.sun@monash.edu organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia – sequence: 2 givenname: Vincent Cs surname: Lee fullname: Lee, Vincent Cs email: vincent.cs.lee@monash.edu organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia – sequence: 3 givenname: Frada surname: Burstein fullname: Burstein, Frada email: burstein@monash.edu organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia – sequence: 4 givenname: Pari Delir surname: Haghighi fullname: Haghighi, Pari Delir email: pari.delir.haghighi@monash.edu organization: Fac. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia |
| BookMark | eNotj8tOwzAURI0ECyj9Adj4Bxz8yuMuo6hApEI3ZV259nWxlDjFdZH4e4LoaqQZndHMHbmOU0RCHgQvhODw1Hf9qi0kF2VRK6U5qCuyhLoRugZoVAPVLXlvI0Xvgw0YM_3GlIM1A2uPKUwp0DdzTOjOFqkZDrORP0fqp0R9wq_zHxEyjuyEmY4hhni4JzfeDCdcXnRBPp5X2-6VrTcvfdeuWRBSZeZKLYwq0XGLzteVRcH5XoKTOCdNzSsN3krwXGpUpdPoHO69bEoQlROgFuTxvzcg4m4eO5r0s7u8VL8t2UyG |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIEA.2015.7334093 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781479983896 1479983896 |
| EndPage | 112 |
| ExternalDocumentID | 7334093 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i123t-d541a35ed0cedf76ce100b29d2e541870649fc29f024e35d4eddebf285916d193 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:32 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-d541a35ed0cedf76ce100b29d2e541870649fc29f024e35d4eddebf285916d193 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7334093 |
| PublicationCentury | 2000 |
| PublicationDate | 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) |
| PublicationTitleAbbrev | ICIEA |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.5816941 |
| Snippet | Algorithms such as OPUS and Apriori-based Mapreduce for enhancing the efficiency of mining frequent item-set for pattern recognition application from... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 108 |
| SubjectTerms | Apriori attribute identifier Big data Dairy products Data mining Distributed databases Frequent item-set mining Generators Itemsets Mapreduce Sugar |
| Title | An efficient vertical-Apriori Mapreduce algorithm for frequent item-set mining |
| URI | https://ieeexplore.ieee.org/document/7334093 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB1UeuipLVr6TQ49Nrrubja7x0WUCq14aMGbxGTSLtRV1rW_v5NoLYVeeguThMAL5E2SmTcA9zqSsRax5qFUKSc-Rq6I5rkMdJgsyOG16EVcn-Rkks5m2bQBD4dcGET0wWfYdU3_l29Weuueynoyiug6EjWhKWWyy9X6zoMJst54MB7mLlhLdPcDf1VM8YQxOvnfUqfQ-cm8Y9MDp5xBA8s2TPKSoZd6oDnMF1AmZHm-ropVVbBnta6cACsy9fFGhvp9ycgVZbbyYdI1c--zfIM1W_pqEB14HQ1fBo98XweBF8QrNTci7itC0QQajZWJxn4QLMLMhEg97qMyzqwOM0t8i5EwMdKZtbBemi4x5KGdQ6tclXgBLDB0QUmEkH1MyXWSyhCfW6OsjXSaCnUJbYfFfL2TupjvYbj623wNxw7uXeTUDbTqaou3cKQ_62JT3fn9-QLJqZPb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBoz42YNHC8vudrt7JAQCETYcMOFGSjvVTWQhy-Lvd1oQY-LFWzNt0-Q16Zu2M28IeVKBCBUPFfOFjBnyMTCJNM-Ep_xogQ6vASfiOhJpGs9myaRCng-5MADggs-gaZvuL1-v1NY-lbVEEOB1JDgixzwMfW-XrfWdCeMlrWF32OvYcC3e3A_9VTPFUUb__H-LXZD6T-4dnRxY5ZJUIK-RtJNTcGIPOIe6EsqILeusi2xVZHQs14WVYAUqP97QUL4vKTqj1BQuULqk9oWWbaCkS1cPok5e-71pd8D2lRBYhsxSMs3DtkQctadAGxEpaHvewk-0D9hjvyrDxCg_Mci4EHAdAp5aC-PE6SKNPtoVqearHK4J9TReUSLORRtidJ6E1MjoRktjAhXHXDZIzWIxX-_ELuZ7GG7-Nj-S08F0PJqPhunLLTmz0O_iqO5ItSy2cE9O1GeZbYoHt1dfqNmXIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+10th+Conference+on+Industrial+Electronics+and+Applications+%28ICIEA%29&rft.atitle=An+efficient+vertical-Apriori+Mapreduce+algorithm+for+frequent+item-set+mining&rft.au=Dawei+Sun&rft.au=Lee%2C+Vincent+Cs&rft.au=Burstein%2C+Frada&rft.au=Haghighi%2C+Pari+Delir&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=108&rft.epage=112&rft_id=info:doi/10.1109%2FICIEA.2015.7334093&rft.externalDocID=7334093 |