Sub-linear time compressed sensing for support recovery using left and right regular sparse-graph codes
In [1], [2], two schemes have been proposed to recover the support of a K-sparse N-dimensional signal from noisy linear measurements. Both schemes use left-regular sparse-graph code based sensing matrices and a simple peeling-based decoding algorithm. Both the schemes require O(K logN) measurements...
Uloženo v:
| Vydáno v: | 2016 IEEE Information Theory Workshop (ITW) s. 429 - 433 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2016
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In [1], [2], two schemes have been proposed to recover the support of a K-sparse N-dimensional signal from noisy linear measurements. Both schemes use left-regular sparse-graph code based sensing matrices and a simple peeling-based decoding algorithm. Both the schemes require O(K logN) measurements and the first scheme require O(N logN) computations whereas the second scheme requires O(K logN) computations (sub-linear time complexity when K is sub-linear in N). We show that by replacing the left-regular ensemble with left and right regular ensemble, we can reduce the number of measurements required of these schemes to the optimal order of O(K log N/K) with decoding complexities of O(K log N/K) and O(N log N/K), respectively. |
|---|---|
| DOI: | 10.1109/ITW.2016.7606870 |