Low-Complexity LSQR-Based Linear Precoding for Massive MIMO Systems
Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However,...
Saved in:
| Published in: | 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) pp. 1 - 5 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2015
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However, classical linear precoding schemes such as zero- forcing (ZF) precoding suffer from high complexity due to the fact they require the matrix inversion of a large size. In this paper, we propose a low-complexity precoding scheme based on the least square QR (LSQR) method to realize the near-optimal performance of ZF precoding without matrix inversion. We show that the proposed LSQR-based precoding can reduce the complexity of ZF precoding by about one order of magnitude. Simulation results verify that the proposed LSQR-based precoding can provide a better tradeoff between complexity and performance than the recently proposed Neumann-based precoding. |
|---|---|
| AbstractList | Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However, classical linear precoding schemes such as zero- forcing (ZF) precoding suffer from high complexity due to the fact they require the matrix inversion of a large size. In this paper, we propose a low-complexity precoding scheme based on the least square QR (LSQR) method to realize the near-optimal performance of ZF precoding without matrix inversion. We show that the proposed LSQR-based precoding can reduce the complexity of ZF precoding by about one order of magnitude. Simulation results verify that the proposed LSQR-based precoding can provide a better tradeoff between complexity and performance than the recently proposed Neumann-based precoding. |
| Author | Zhaohua Lu Tian Xie Qian Han Bichai Wang Jinguo Quan |
| Author_xml | – sequence: 1 surname: Tian Xie fullname: Tian Xie email: xiet11@mails.tsinghua.edu.cn organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China – sequence: 2 surname: Zhaohua Lu fullname: Zhaohua Lu organization: ZTE Cooperation, Shenzhen, China – sequence: 3 surname: Qian Han fullname: Qian Han organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China – sequence: 4 surname: Jinguo Quan fullname: Jinguo Quan organization: Shenzhen Grad. Sch., Tsinghua Univ., Shenzhen, China – sequence: 5 surname: Bichai Wang fullname: Bichai Wang organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China |
| BookMark | eNotj91KwzAYQCPohZt7Ar3IC7Tm65f-5FKL00HLdJvejiT9KoG2GU1R-_YK7upcHDhwFuxy8AMxdgciBhDq_uNQrnXXxYmANM5RgYDsgi1A5koVQoG6ZmXlv6PS96eOftw082r_tosedaCGV24gPfLXkaxv3PDJWz_yWofgvojXm3rL93OYqA837KrVXaDVmUv2vn46lC9RtX3elA9V5CDBKWqERiRBqUxRy0ShRZNZiXluC0ESWlHkWoFppbGt-jMFgSkoa5AaIdHgkt3-dx0RHU-j6_U4H89f-AvATEdW |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/VTCFall.2015.7391016 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479980919 9781479980918 |
| EndPage | 5 |
| ExternalDocumentID | 7391016 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i123t-d0a33e0e5453a4293c3b6c4377c80e41f087a91bf4bcf96c48e1b8e6d3ed043b3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:36:20 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-d0a33e0e5453a4293c3b6c4377c80e41f087a91bf4bcf96c48e1b8e6d3ed043b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7391016 |
| PublicationCentury | 2000 |
| PublicationDate | 20150901 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 20150901 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) |
| PublicationTitleAbbrev | VTCFall |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9655638 |
| Snippet | Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Antennas Computational complexity MIMO Signal to noise ratio Simulation |
| Title | Low-Complexity LSQR-Based Linear Precoding for Massive MIMO Systems |
| URI | https://ieeexplore.ieee.org/document/7391016 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXf5ODRtLtMutlcLRaFtlatpbeySWahIK3UreK_d7JdKoIXbyEPQp7ffJnMDMCVNUYjy7EyZqyTKldGZkahTJSzzA68d2UUhUlfD4fpdGpGNbje2sIQUfn5jFohWery_dKtw1NZW6MJZHMHdrRONrZalTVcHJn2ZNztZa9BnRB3WlXVXzFTSsjo7f-vswNo_tjeidEWVQ6hRosGdPvLTxmObnBfWXyJ_vPjk7xhAPKCySRvVm7CPDK0ECyFigGLxHyNicH94EFUTsmb8NK7HXfvZBX-QM4ZTgrpowyRImIZBzOGDXRoE6dQa5dGpOI8SnVmYpsr63LDJSnFNqXEI_lIocUjqC-WCzoGYcjzxRZ5zDwTqg4axiWPaZIb521OeAKNMAGzt42Hi1k19tO_s89gL8zx5qfVOdSL1ZouYNd9FPP31WW5LN-bVo9K |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfSk0opv9-DRbRNmm2SvBkuLSa1aS28l-wgUpJWaKv57Z9NQEbx4W_bBss9vvp2dGYBrJWWIJMdyn7COi1xInkmBPBBaETswRpdRFMZJOBhEk4kc1uBmYwtjrS0_n9mWS5a6fLPQK_dU1g5ROrK5BdsuclZlrVXZw_mebI9HcTd7dQoFv9OqKv-KmlKCRnf_f90dQPPH-o4NN7hyCDU7b0CcLD65O7zOgWXxxZLnxyd-SxBkGNFJ2q7UhJika8FIDmUpCcV0kbG0nz6wyi15E166d6O4x6sACHxGgFJw42WI1rMk5WBGwIEaVaAFhqGOPCv83IvCTPoqF0rnkkoi66vIBgat8QQqPIL6fDG3x8CkNXS1eQYzQ5Sqg5KQyWAU5FIblVs8gYabgOnb2sfFtBr76d_ZV7DbG6XJNOkP7s9gz833-t_VOdSL5cpewI7-KGbvy8tyib4BQzKSkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+82nd+Vehicular+Technology+Conference+%28VTC2015-Fall%29&rft.atitle=Low-Complexity+LSQR-Based+Linear+Precoding+for+Massive+MIMO+Systems&rft.au=Tian+Xie&rft.au=Zhaohua+Lu&rft.au=Qian+Han&rft.au=Jinguo+Quan&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVTCFall.2015.7391016&rft.externalDocID=7391016 |