Low-Complexity LSQR-Based Linear Precoding for Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) S. 1 - 5
Hauptverfasser: Tian Xie, Zhaohua Lu, Qian Han, Jinguo Quan, Bichai Wang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2015
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However, classical linear precoding schemes such as zero- forcing (ZF) precoding suffer from high complexity due to the fact they require the matrix inversion of a large size. In this paper, we propose a low-complexity precoding scheme based on the least square QR (LSQR) method to realize the near-optimal performance of ZF precoding without matrix inversion. We show that the proposed LSQR-based precoding can reduce the complexity of ZF precoding by about one order of magnitude. Simulation results verify that the proposed LSQR-based precoding can provide a better tradeoff between complexity and performance than the recently proposed Neumann-based precoding.
AbstractList Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However, classical linear precoding schemes such as zero- forcing (ZF) precoding suffer from high complexity due to the fact they require the matrix inversion of a large size. In this paper, we propose a low-complexity precoding scheme based on the least square QR (LSQR) method to realize the near-optimal performance of ZF precoding without matrix inversion. We show that the proposed LSQR-based precoding can reduce the complexity of ZF precoding by about one order of magnitude. Simulation results verify that the proposed LSQR-based precoding can provide a better tradeoff between complexity and performance than the recently proposed Neumann-based precoding.
Author Zhaohua Lu
Tian Xie
Qian Han
Bichai Wang
Jinguo Quan
Author_xml – sequence: 1
  surname: Tian Xie
  fullname: Tian Xie
  email: xiet11@mails.tsinghua.edu.cn
  organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Zhaohua Lu
  fullname: Zhaohua Lu
  organization: ZTE Cooperation, Shenzhen, China
– sequence: 3
  surname: Qian Han
  fullname: Qian Han
  organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
– sequence: 4
  surname: Jinguo Quan
  fullname: Jinguo Quan
  organization: Shenzhen Grad. Sch., Tsinghua Univ., Shenzhen, China
– sequence: 5
  surname: Bichai Wang
  fullname: Bichai Wang
  organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
BookMark eNotj91KwzAYQCPohZt7Ar3IC7Tm65f-5FKL00HLdJvejiT9KoG2GU1R-_YK7upcHDhwFuxy8AMxdgciBhDq_uNQrnXXxYmANM5RgYDsgi1A5koVQoG6ZmXlv6PS96eOftw082r_tosedaCGV24gPfLXkaxv3PDJWz_yWofgvojXm3rL93OYqA837KrVXaDVmUv2vn46lC9RtX3elA9V5CDBKWqERiRBqUxRy0ShRZNZiXluC0ESWlHkWoFppbGt-jMFgSkoa5AaIdHgkt3-dx0RHU-j6_U4H89f-AvATEdW
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTCFall.2015.7391016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479980919
9781479980918
EndPage 5
ExternalDocumentID 7391016
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i123t-d0a33e0e5453a4293c3b6c4377c80e41f087a91bf4bcf96c48e1b8e6d3ed043b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:20 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-d0a33e0e5453a4293c3b6c4377c80e41f087a91bf4bcf96c48e1b8e6d3ed043b3
PageCount 5
ParticipantIDs ieee_primary_7391016
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall)
PublicationTitleAbbrev VTCFall
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9655638
Snippet Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Antennas
Computational complexity
MIMO
Signal to noise ratio
Simulation
Title Low-Complexity LSQR-Based Linear Precoding for Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/7391016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRbROSNJurxaLQ1qpVeit5TKAgrdSt4r93sl0qghdvIQ9CJo9vviQzQ8glj1p7HmXGLVIUqZCgWKN0pkEElTsZnYplsAk9GuXTqRnXyNXWFgYAys9n0E7J8i0_LP06XZV1tDCJbNZJXevuxlarsobjzHReJr2-fU3PCVy1q6q_YqaUkNHf-19n-6T1Y3tHx1tUOSA1WDRJb7D8zNLWTe4riy86eHp4zK4RgAJFMomLFZsgj0wtKGqhdIgqMR5jdHg3vKeVU_IWee7fTHq3WRX-IJsjnBRZYFYIYIA6jrAIG8IL1_VSoHBzBpJHlmtruIvS-WiwJAfucugGAYFJ4cQhaSyWCzgiFDkP9yo5n0NIDlY4a5mGIHOjjVfKHpNmEsDsbePhYlaN_eTv7FOym2S8-Wl1RhrFag3nZMd_FPP31UU5Ld9kgY9g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXh028QkzebqYmlxt1at0lvJa6EgrdSt4r93sl0qghdvIQ9CJo9vviQzg9AlzaW0NOcR1UBRuACCopWQkfTMidjw3Ii8DDYhB4N4PFbDGrpa28J478vPZ74VkuVbvpvbZbgqa0umAtncQJuC82uystaq7OEoUe2XUdLVr-FBgYpWVflX1JQSNLq7_-tuDzV_rO_wcI0r-6jmZw2UpPPPKGze4MCy-MLp08NjdAMQ5DDQSViu0ASYZGiBQQ_FGSjFcJDhrJ_d48oteRM9d29HSS-qAiBEUwCUInJEM-aJBy2HaQAOZpnpWM5AvDHxnOYkllpRk3NjcwUlsacm9h3HvCOcGXaA6rP5zB8iDKyHWhHczwEoO82M1kR6x2MllRVCH6FGEMDkbeXjYlKN_fjv7Au03Rtl6STtD-5O0E6Q9-rf1SmqF4ulP0Nb9qOYvi_Oyyn6BgsIkqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+82nd+Vehicular+Technology+Conference+%28VTC2015-Fall%29&rft.atitle=Low-Complexity+LSQR-Based+Linear+Precoding+for+Massive+MIMO+Systems&rft.au=Tian+Xie&rft.au=Zhaohua+Lu&rft.au=Qian+Han&rft.au=Jinguo+Quan&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVTCFall.2015.7391016&rft.externalDocID=7391016