Deep feature learning for pulmonary nodule classification in a lung CT

In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 4th International Winter Conference on Brain-Computer Interface (BCI) s. 1 - 3
Hlavní autori: Bum-Chae Kim, Yu Sub Sung, Heung-Il Suk
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.02.2016
Predmet:
ISBN:1467378410, 9781467378413
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.
ISBN:1467378410
9781467378413
DOI:10.1109/IWW-BCI.2016.7457462