Multi-objective reactive power optimization based on chaos particle swarm optimization algorithm

Reactive power optimization is closely related to voltage quality, network loss and it has great significance for the safety, reliability and economical operation of the power system. For shortage of traditional reactive power optimization, this paper establishes a multiple-objective reactive power...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA) s. 1014 - 1017
Hlavní autoři: He Xiao, Pang Xia, Zhu Da-rui, Liu Chong-xin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2013
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Reactive power optimization is closely related to voltage quality, network loss and it has great significance for the safety, reliability and economical operation of the power system. For shortage of traditional reactive power optimization, this paper establishes a multiple-objective reactive power optimization model which consists of minimum active power loss, minimum node voltage deviation, best static voltage stability and minimum reactive cost. To optimize four targets simultaneously, this paper has proposed a multi-objective reactive power optimization method which applies the chaotic particle swarm optimization algorithm based on Pareto solutions and finds the Pareto optimal solution sets of multi-objective optimization problems, then policy makers can make a scientific decision according to the actual situation. To prove the validity of the method proposed, this paper makes a multiple-objective reactive power optimization analysis for the IEEE30-bus system. The result shows that the method presented in this paper can achieve good results of reactive power optimization for decision makers to refer to.
AbstractList Reactive power optimization is closely related to voltage quality, network loss and it has great significance for the safety, reliability and economical operation of the power system. For shortage of traditional reactive power optimization, this paper establishes a multiple-objective reactive power optimization model which consists of minimum active power loss, minimum node voltage deviation, best static voltage stability and minimum reactive cost. To optimize four targets simultaneously, this paper has proposed a multi-objective reactive power optimization method which applies the chaotic particle swarm optimization algorithm based on Pareto solutions and finds the Pareto optimal solution sets of multi-objective optimization problems, then policy makers can make a scientific decision according to the actual situation. To prove the validity of the method proposed, this paper makes a multiple-objective reactive power optimization analysis for the IEEE30-bus system. The result shows that the method presented in this paper can achieve good results of reactive power optimization for decision makers to refer to.
Author Pang Xia
Zhu Da-rui
He Xiao
Liu Chong-xin
Author_xml – sequence: 1
  surname: He Xiao
  fullname: He Xiao
  email: 402492178@qq.com
  organization: Sch. of Electr. Eng., Xi'an Jiaotong Univ., Xi'an, China
– sequence: 2
  surname: Pang Xia
  fullname: Pang Xia
  email: howlluy@163.com
  organization: Sch. of Electr. Eng., Xi'an Jiaotong Univ., Xi'an, China
– sequence: 3
  surname: Zhu Da-rui
  fullname: Zhu Da-rui
  email: zdarui@163.com
  organization: Sch. of Electr. Eng., Xi'an Jiaotong Univ., Xi'an, China
– sequence: 4
  surname: Liu Chong-xin
  fullname: Liu Chong-xin
  email: liucx@mail.xjtu.edu.cn
  organization: Sch. of Electr. Eng., Xi'an Jiaotong Univ., Xi'an, China
BookMark eNpVj71OwzAURo0EAy28ACx-gYQ4dq7jsar4qdTCAMzl2rmhRkkcOYYKnh6kdmE6Zzj6pG_GTocwEGNXosiFKMzNavP8uMjLQsgctJKqkidsJpQ2ptQC5Dl723x2yWfBfpBL_ot4JDzIGPYUeRiT7_0PJh8GbnGihv-J22GY-IgxedcRn_YY-_8pdu8h-rTrL9hZi91El0fO2evd7cvyIVs_3a-Wi3XmRSlThkrVAlvQtiIAQ1SqqgWsWitBOwABTSOs0tDUbUMopUHlVF2bwikHUsg5uz7seiLajtH3GL-3x9PyF9gqU6I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IMSNA.2013.6743453
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479927163
9781479927166
EndPage 1017
ExternalDocumentID 6743453
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-a4481af67b5e669ee245f6a5fb367c6616dd1b476d8fdea339a4c48890c4c6313
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-a4481af67b5e669ee245f6a5fb367c6616dd1b476d8fdea339a4c48890c4c6313
PageCount 4
ParticipantIDs ieee_primary_6743453
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA)
PublicationTitleAbbrev IMSNA
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5592607
Snippet Reactive power optimization is closely related to voltage quality, network loss and it has great significance for the safety, reliability and economical...
SourceID ieee
SourceType Publisher
StartPage 1014
SubjectTerms Chaos
Chaos optimized
Minimization
Multi-objective optimization
Pareto optimization
Pareto solutions
Particle swarm algorithm
Particle swarm optimization
Power system stability
Reactive power
Reactive power optimization
Title Multi-objective reactive power optimization based on chaos particle swarm optimization algorithm
URI https://ieeexplore.ieee.org/document/6743453
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtLtNNmmOIhYFLQUVeqt5TGzF7pbtVv--ye5aKXjxNoRAYCaTL5PMN4PQpeaKSog08dBtCJOOEm1D1f2BiUFxBzwqicIPYjQaTCZy3EBXGy4MAJTJZ9ANYvmXbzOzDk9lvZAwzxLaRE0heMXV-uHBRLJ3__g0ug7JWrRbT9zqmFICxnDvf0vto84v8w6PN5hygBqQttFryZIlmX6vTifsL3qVsAw9znDm3X5R8ylxgCWLvWBmKlvhZb018OpL5YvtqerjLcvnxWzRQS_D2-ebO1J3RiBzjzQFUT6oipXjQifAuQTos8RxlThNuTAecrm1sWaC24GzoCiVihnvqjIyzHAa00PUSrMUjhD24QXTIpKm3wfmYhUapTulIwYskTSOj1E7aGe6rIpfTGvFnPw9fIp2gwGqfI8z1CryNZyjHfNZzFf5RWmxb780m_8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5zCvqksom_zYOPdmubNF0eRRwbbmXghL3NJL24iltH1-m_b9LWycAX344QCNzl8uWS--4QupVMEA6udAx0K4dyTRwZ26r7HeWBYBqYWxCFB2EUdSYTPqqhuw0XBgCK5DNoWbH4y49TtbZPZW2bME8DsoN2A0p9t2Rr_TBhXN7uD5-je5uuRVrV1K2eKQVkdA__t9gRav5y7_BogyrHqAaLBnoteLJOKt_L8wmbq14pLG2XM5wax59XjEpsgSnGRlAzka7wstocePUlsvn2VPHxlmZJPps30Uv3cfzQc6reCE5isCZ3hAmrPKFZKANgjAP4NNBMBFoSFioDuiyOPUlDFnd0DIIQLqgyzspdRRUjHjlB9UW6gFOETYBBZehy5ftAtSdsq3QtpEuBBpx43hlqWO1Ml2X5i2mlmPO_h2_Qfm88HEwH_ejpAh1YY5TZH5eonmdruEJ76jNPVtl1Yb1vCH2fRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+2nd+International+Symposium+on+Instrumentation+and+Measurement%2C+Sensor+Network+and+Automation+%28IMSNA%29&rft.atitle=Multi-objective+reactive+power+optimization+based+on+chaos+particle+swarm+optimization+algorithm&rft.au=He+Xiao&rft.au=Pang+Xia&rft.au=Zhu+Da-rui&rft.au=Liu+Chong-xin&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=1014&rft.epage=1017&rft_id=info:doi/10.1109%2FIMSNA.2013.6743453&rft.externalDocID=6743453