Multi sensor data fusion algorithms for target tracking using multiple measurements

Multi-Sensor Data Fusion (MSDF) is very rapidly growing as an independent discipline to be considered with and finds applications in many areas. Surplus and complementary sensor data can be fused using multi-sensor fusion techniques to enhance system competence and consistency. The objective of this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) s. 1 - 4
Hlavní autoři: Anitha, R., Renuka, S., Abudhahir, A.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2013
Témata:
ISBN:1479915947, 9781479915941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multi-Sensor Data Fusion (MSDF) is very rapidly growing as an independent discipline to be considered with and finds applications in many areas. Surplus and complementary sensor data can be fused using multi-sensor fusion techniques to enhance system competence and consistency. The objective of this work is to evaluate multi sensor data fusion algorithms for target tracking. Target tracking using observations from several sensors can achieve improved estimation performance than a single sensor. In this work, three data fusion algorithms based on Kalman filter namely State Vector Fusion (SVF), Measurement Fusion (MF) and Gain fusion (GF) are implemented in a tracking system. Using MATLAB, these three methods are compared and performance metrics are computed for the evaluation of algorithms. The results show that State Vector Fusion estimates the states well when compared to Measurement Fusion and Gain Fusion.
ISBN:1479915947
9781479915941
DOI:10.1109/ICCIC.2013.6724283