Classification of mental tasks using support vector machine based on linear predictive coding and new mother wavelet transform
The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for eac...
Saved in:
| Published in: | 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON) pp. 156 - 159 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.10.2015
|
| Subjects: | |
| ISBN: | 9781467391092, 1467391093 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for each subject for one trial. The motivation for this work is using Linear predictive Coding (LPC) method to compress channels of EEG one channel. Eight features are employed for each signal of EEG using LPC 1st order followed by 3 level Discrete Wavelet Transform (DWT). New mother wavelet is used to be near the waveform of EEG signals. Statistical calculations are conducted for the 4 coefficients of DWT. Classification is conducted using support vector machine SVM. The classifier using SVM provided a high recognition rate reaching up to 100%, in some cases, and an average rate of about 85 %. The average specificity percent is 83.33 %. The average sensitivity percent is 86.66%. |
|---|---|
| AbstractList | The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for each subject for one trial. The motivation for this work is using Linear predictive Coding (LPC) method to compress channels of EEG one channel. Eight features are employed for each signal of EEG using LPC 1st order followed by 3 level Discrete Wavelet Transform (DWT). New mother wavelet is used to be near the waveform of EEG signals. Statistical calculations are conducted for the 4 coefficients of DWT. Classification is conducted using support vector machine SVM. The classifier using SVM provided a high recognition rate reaching up to 100%, in some cases, and an average rate of about 85 %. The average specificity percent is 83.33 %. The average sensitivity percent is 86.66%. |
| Author | Azmy Gad, Mohamed Moustafa |
| Author_xml | – sequence: 1 givenname: Mohamed Moustafa surname: Azmy Gad fullname: Azmy Gad, Mohamed Moustafa email: drmazmi@gmail.com organization: Biomed. Eng. Dept. in Med. Res. Inst., Alexandria Univ. in Alexandria in Egypt, Egypt |
| BookMark | eNpNkLtOwzAYRo2AAUqfACH9L9Bix0kcjxBxqVRRictcOfZvapHYke22YuHZAdGB6dMZzhm-c3Lig0dCrhidM0bl9cvidvHcrp7mBWXVXPCaNYIfkakUDStrwSVjrDr-z1QWZ-Sr7VVKzjqtsgsegoUBfVY9ZJU-EmyT8--QtuMYYoYd6hwiDEpvnEfoVEIDP1b_QyrCGNE4nd0OQQfzKypvwOMehpA3GGGvdthjhhyVTzbE4YKcWtUnnB52Qt7u717bx9ly9bBob5YzxwqeZ1J3JVpemVLWyKuyMIJ23FJRd1zYsm5UaRpptKwaYxlSqwWaupDcCGmr2vIJufzrOkRcj9ENKn6uDy_xbwTWYvQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SIBIRCON.2015.7361873 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467391115 1467391115 |
| EndPage | 159 |
| ExternalDocumentID | 7361873 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i123t-9cb4ef35d496e3542d70b3f076b37f468a4d89dc958df1e0fc7ed6293d79f56f3 |
| IEDL.DBID | RIE |
| ISBN | 9781467391092 1467391093 |
| IngestDate | Wed Jun 26 19:25:02 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-9cb4ef35d496e3542d70b3f076b37f468a4d89dc958df1e0fc7ed6293d79f56f3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7361873 |
| PublicationCentury | 2000 |
| PublicationDate | 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 20151001 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON) |
| PublicationTitleAbbrev | SIBIRCON |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.5801458 |
| Snippet | The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 156 |
| SubjectTerms | Discrete wavelet transforms Electroencephalography Feature extraction Sensitivity Support vector machines |
| Title | Classification of mental tasks using support vector machine based on linear predictive coding and new mother wavelet transform |
| URI | https://ieeexplore.ieee.org/document/7361873 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG-QePCkBozvfAePDjbW9XGVSOSCxEfCjaztV0MMg2wDb_7trmWgJl68dUv2yNdk32_t70HIjWJIUUc0oIxiQFUqApEw6pwREyZUlEqjfNgEH43EZCLHDXK708IgoiefYccN_V6-WeiVWyrr8phFgsd7ZI9z9kOrxXgsnS3S1sKpPu7Vip1q2H0e3g2f-o8jR-ZKOvWNfiWq-IYyOPzfqxyR9rcyD8a7nnNMGpi1yKdPtnScH19mWFjYWPZDmRbvBThu-xsUq6XD2rD26_Qw9yxKBNfGDFRXObyZ5rDM3daN-wiCXriHQJoZqMA3zL1YCz5Sl1VRQrmFvG3yOrh_6T8Eda5CMKv6VBlIrSjaODFUMowT2jM8VLENOVMxt5SJlBohjZaJMDbC0GqOhlW4wHBpE2bjE9LMFhmeEghDhSG3JmVG0VBJZZmwVFf_fJqH2LNnpOVqN11urDOmddnO_z59QQ7c9Gy4cpekWeYrvCL7el3Oivzaz_cX9Z6tgQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB7cQE8qKu6-g0dT02Yyy1WxtKi1aIXeSmbmjRTpQpvWm7_dvGncwIu3SSALbyDvy8y3MHZuBHK0VR5xwTHiJlORSgUnZ8RUKFPNtDMhbEK2Wqrb1e0ldvGlhUHEQD7DCg3DXr4b2RktlV3KRFSVTJbZKiVn_VRrCZloMkb6NHEqj2ulZqcYXj41r5qP1w8tonOllfJWvzJVQkupb_7vZbbY7rc2D9pfXWebLeFwh72HbEti_YRCw8jDwrQf8mz6OgVit7_AdDYmtA3zsFIPg8CjRKBG5qC4ihBnNoHxhDZv6DMIdkQPgWzooIDfMAhyLXjLKK0ih_wT9O6y5_pN57oRlckKUb_oVHmkreHok9RxLTBJec3J2CQ-lsIk0nOhMu6Udlanyvkqxt5KdKJABk5qnwqf7LGV4WiI-wzi2GAsvcuEMzw22nihPLfFX5-VMdb8Aduh2vXGC_OMXlm2w79Pn7H1Ruf-rnfXbN0esQ2aqgVz7pit5JMZnrA1O8_708lpmPsPKpmwyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Biomedical+Engineering+and+Computational+Technologies+%28SIBIRCON%29&rft.atitle=Classification+of+mental+tasks+using+support+vector+machine+based+on+linear+predictive+coding+and+new+mother+wavelet+transform&rft.au=Azmy+Gad%2C+Mohamed+Moustafa&rft.date=2015-10-01&rft.pub=IEEE&rft.isbn=9781467391092&rft.spage=156&rft.epage=159&rft_id=info:doi/10.1109%2FSIBIRCON.2015.7361873&rft.externalDocID=7361873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/sc.gif&client=summon&freeimage=true |

