Classification of mental tasks using support vector machine based on linear predictive coding and new mother wavelet transform

The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON) S. 156 - 159
1. Verfasser: Azmy Gad, Mohamed Moustafa
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2015
Schlagworte:
ISBN:9781467391092, 1467391093
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for each subject for one trial. The motivation for this work is using Linear predictive Coding (LPC) method to compress channels of EEG one channel. Eight features are employed for each signal of EEG using LPC 1st order followed by 3 level Discrete Wavelet Transform (DWT). New mother wavelet is used to be near the waveform of EEG signals. Statistical calculations are conducted for the 4 coefficients of DWT. Classification is conducted using support vector machine SVM. The classifier using SVM provided a high recognition rate reaching up to 100%, in some cases, and an average rate of about 85 %. The average specificity percent is 83.33 %. The average sensitivity percent is 86.66%.
AbstractList The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals. In this study, EEG signals from 5 mental tasks were recorded from 7 subjects and combinations of 2 different mental tasks were studied for each subject for one trial. The motivation for this work is using Linear predictive Coding (LPC) method to compress channels of EEG one channel. Eight features are employed for each signal of EEG using LPC 1st order followed by 3 level Discrete Wavelet Transform (DWT). New mother wavelet is used to be near the waveform of EEG signals. Statistical calculations are conducted for the 4 coefficients of DWT. Classification is conducted using support vector machine SVM. The classifier using SVM provided a high recognition rate reaching up to 100%, in some cases, and an average rate of about 85 %. The average specificity percent is 83.33 %. The average sensitivity percent is 86.66%.
Author Azmy Gad, Mohamed Moustafa
Author_xml – sequence: 1
  givenname: Mohamed Moustafa
  surname: Azmy Gad
  fullname: Azmy Gad, Mohamed Moustafa
  email: drmazmi@gmail.com
  organization: Biomed. Eng. Dept. in Med. Res. Inst., Alexandria Univ. in Alexandria in Egypt, Egypt
BookMark eNpNkLtOwzAYRo2AAUqfACH9L9Bix0kcjxBxqVRRictcOfZvapHYke22YuHZAdGB6dMZzhm-c3Lig0dCrhidM0bl9cvidvHcrp7mBWXVXPCaNYIfkakUDStrwSVjrDr-z1QWZ-Sr7VVKzjqtsgsegoUBfVY9ZJU-EmyT8--QtuMYYoYd6hwiDEpvnEfoVEIDP1b_QyrCGNE4nd0OQQfzKypvwOMehpA3GGGvdthjhhyVTzbE4YKcWtUnnB52Qt7u717bx9ly9bBob5YzxwqeZ1J3JVpemVLWyKuyMIJ23FJRd1zYsm5UaRpptKwaYxlSqwWaupDcCGmr2vIJufzrOkRcj9ENKn6uDy_xbwTWYvQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIBIRCON.2015.7361873
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467391115
1467391115
EndPage 159
ExternalDocumentID 7361873
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-9cb4ef35d496e3542d70b3f076b37f468a4d89dc958df1e0fc7ed6293d79f56f3
IEDL.DBID RIE
ISBN 9781467391092
1467391093
IngestDate Wed Jun 26 19:25:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-9cb4ef35d496e3542d70b3f076b37f468a4d89dc958df1e0fc7ed6293d79f56f3
PageCount 4
ParticipantIDs ieee_primary_7361873
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)
PublicationTitleAbbrev SIBIRCON
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5800656
Snippet The aims of Brain-Computer interfaces (BCI) research is helping paralyzed people communicating with others by using their electroencephalogram (EEG) signals....
SourceID ieee
SourceType Publisher
StartPage 156
SubjectTerms Discrete wavelet transforms
Electroencephalography
Feature extraction
Sensitivity
Support vector machines
Title Classification of mental tasks using support vector machine based on linear predictive coding and new mother wavelet transform
URI https://ieeexplore.ieee.org/document/7361873
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV86wZG0iZxbMcrFRVdSsWH1K1y_IEq1KRK0rLx27HdtIDEwmZHchzdSXlP9nt3CN0QwSMscRYYSdIgkYIGFvTiIJY0NiFmihLpm02w8TidTvmkhW53XhittRef6Z4b-rt8VciVOyrrM0yjlOE9tMcY_eHVogxzVxZpW8KpmceNY8cO-8-ju9HT4HHsxFyk17zoV0cVDyjDw_99yhHqfjvzYLLDnGPU0nkHffrOlk7z48MMhYFNyX6oRfVegdO2v0G1WjquDWt_Tg8Lr6LU4GBMgV3l-KYoYVm6qxv3EwRZuE1A5Aos-YaFN2vBh3C9Kmqot5S3i16H9y-Dh6DpqxDMLU7VAZdZog0mKuFUY5LEioUZNiGjGWYmoalIVMqV5CRVJtKhkUwranmBYtwQavAJaudFrk8RZBkXxObVGAtzSRwLzqQIpWKWeERxxs9Qx8VuttyUzpg1YTv_-_EFOnDp2WjlLlG7Llf6Cu3LdT2vymuf7y-ymKzt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_fQePDsa6tutVIoGISBQTbqTrD0MMg8DAm3-7bZmoiRdv7ZKuy3vJvi_t996H0DURvIElTgMjSRLEUtDAgl4URJJGJsRMUSK92QTr9ZLhkPdL6GZTC6O19uIzXXNDf5evpnLpjsrqDNNGwvAW2nbOWT-rtSjD3DVG-mriVMyjombHDuvPndvOU_Ox5-RcpFa86penioeU1v7_PuYAVb9r86C_QZ1DVNJZBX14b0un-vGBhqmBddN-yMXibQFO3f4Ki-XMsW1Y-ZN6mHgdpQYHZArsKsc4xRxmc3d5436DIKduExCZAku_YeLLteBdOLeKHPIv0ltFL627QbMdFM4KwdgiVR5wmcbaYKJiTjUmcaRYmGITMppiZmKaiFglXElOEmUaOjSSaUUtM1CMG0INPkLlbJrpYwRpygWxmTXGAl0cRYIzKUKpmKUejSjlJ6jiYjearZtnjIqwnf79-ArttgcP3VG307s_Q3suVWvl3Dkq5_OlvkA7cpWPF_NLn_tP4ISwNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Biomedical+Engineering+and+Computational+Technologies+%28SIBIRCON%29&rft.atitle=Classification+of+mental+tasks+using+support+vector+machine+based+on+linear+predictive+coding+and+new+mother+wavelet+transform&rft.au=Azmy+Gad%2C+Mohamed+Moustafa&rft.date=2015-10-01&rft.pub=IEEE&rft.isbn=9781467391092&rft.spage=156&rft.epage=159&rft_id=info:doi/10.1109%2FSIBIRCON.2015.7361873&rft.externalDocID=7361873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467391092/sc.gif&client=summon&freeimage=true