Independent Metropolis-Hastings-Klein algorithm for lattice Gaussian sampling

Sampling from the lattice Gaussian distribution is emerging as an important problem in coding and cryptography. In this paper, a Markov chain Monte Carlo (MCMC) algorithm referred to as the independent Metropolis-Hastings-Klein (MHK) algorithm is proposed for lattice Gaussian sampling, which overcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Symposium on Information Theory S. 2470 - 2474
Hauptverfasser: Wang, Zheng, Ling, Cong
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2015
Schlagworte:
ISSN:2157-8095, 2157-8117
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sampling from the lattice Gaussian distribution is emerging as an important problem in coding and cryptography. In this paper, a Markov chain Monte Carlo (MCMC) algorithm referred to as the independent Metropolis-Hastings-Klein (MHK) algorithm is proposed for lattice Gaussian sampling, which overcomes the restriction on the standard deviation confronted by the Klein algorithm. It is proven that the Markov chain arising from the proposed MHK algorithm is uniformly ergodic, namely, it converges to the stationary distribution exponentially fast. Moreover, the rate of convergence is explicitly calculated in terms of the theta series, making it possible to predict the mixing time of the underlying Markov chain.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-8095
2157-8117
DOI:10.1109/ISIT.2015.7282900