Nonlinear process monitoring using improved kernel principal component analysis

Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control and Decision Conference S. 5832 - 5843
Hauptverfasser: Wei, Chihang, Chen, Junghui, Song, Zhihuan
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2016
Schlagworte:
ISSN:1948-9447
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research literatures. In this paper, a novel methodology to learn a data-dependent kernel function automatically from specific input data is proposed and the improved kernel principal component analysis is obtained through using the data-dependent kernel function in traditional KPCA. The learning procedure includes two parts: learning a kernel matrix and approximating a kernel function. The kernel matrix is learned via a manifold learning method named maximum variance unfolding (MVU) which considers underlying manifold structure to ensure that principal components are linear in kernel space. Then, a kernel function is approximated via generalized Nystrom formula. The effectiveness of the improved KPCA model is confirmed by a numerical simulation and the Tennessee Eastman (TE) process benchmark.
AbstractList Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research literatures. In this paper, a novel methodology to learn a data-dependent kernel function automatically from specific input data is proposed and the improved kernel principal component analysis is obtained through using the data-dependent kernel function in traditional KPCA. The learning procedure includes two parts: learning a kernel matrix and approximating a kernel function. The kernel matrix is learned via a manifold learning method named maximum variance unfolding (MVU) which considers underlying manifold structure to ensure that principal components are linear in kernel space. Then, a kernel function is approximated via generalized Nystrom formula. The effectiveness of the improved KPCA model is confirmed by a numerical simulation and the Tennessee Eastman (TE) process benchmark.
Author Chihang Wei
Zhihuan Song
Junghui Chen
Author_xml – sequence: 1
  givenname: Chihang
  surname: Wei
  fullname: Wei, Chihang
– sequence: 2
  givenname: Junghui
  surname: Chen
  fullname: Chen, Junghui
– sequence: 3
  givenname: Zhihuan
  surname: Song
  fullname: Song, Zhihuan
BookMark eNotkMtOwzAQRQ0Cibb0AxCbLNmkzNjxI0sUnlJFN7CO3HSMDIld4hSpf0-qdjN3cY-ujmbKLkIMxNgNwgIRyvuqeqwWHFAttBQcCn7G5qU2WCgtSo0Cz9kEy8LkZVHoKzZN6RtAKQEwYav3GFofyPbZto8NpZR1Mfgh9j58Zbt0uL4bqz_aZD_UB2pH0IfGb22bNbHbji5hyGyw7T75dM0unW0TzU85Y5_PTx_Va75cvbxVD8vcIxdDrteutE7zNecOnHTrRnOlN5I4FsjBcunAABnljCsAG9AaSCilCBthSIoZuzvujmq_O0pD3fnUUNvaQHGXajRCSqNMeUBvj6gnonqU72y_r0-vEv_4EV91
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SP
8FD
L7M
DOI 10.1109/CCDC.2016.7532042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781467397131
146739713X
1467397148
9781467397148
EISSN 1948-9447
EndPage 5843
ExternalDocumentID 7532042
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SP
8FD
L7M
ID FETCH-LOGICAL-i123t-7bf9af72b22f0f5fbc7267d5e214120a25f080e86f8f401c0770e3666e1c38e53
IEDL.DBID RIE
IngestDate Fri Jul 11 08:31:31 EDT 2025
Wed Aug 27 02:12:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-7bf9af72b22f0f5fbc7267d5e214120a25f080e86f8f401c0770e3666e1c38e53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1835586895
PQPubID 23500
PageCount 12
ParticipantIDs ieee_primary_7532042
proquest_miscellaneous_1835586895
PublicationCentury 2000
PublicationDate 20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 20160501
  day: 01
PublicationDecade 2010
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.6088088
Snippet Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 5832
SubjectTerms Approximation
Eigenvalues and eigenfunctions
Fault Detection
Kernel
Kernel Function Approximation
Kernel functions
Kernels
Learning
Linear programming
Manifold Learning
Manifolds
Mathematical models
Monitoring
Nonlinear Process Monitoring
Principal component analysis
Training
Title Nonlinear process monitoring using improved kernel principal component analysis
URI https://ieeexplore.ieee.org/document/7532042
https://www.proquest.com/docview/1835586895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEuPDbEeClIHOnWps2j58LEAY0dAO1WpamDJkY3dRu_n6TtBhJcuEWKolROajv2588AN1yin1lT50WZkV4Uy8jLYuV7VAfKOhQ5z6s-ZK-PYjSSk0k8bsHtthYGESvwGfbdsMrl53O9dqGygXBdDCKrcHeE4HWt1kbrckcd1WQtAz8eJMld4oBbvN8sarqn_FK5lR0ZHvzvCw6h-12QR8ZbU3MELSyOYf8Hl2AHnkY16YUqyaIG_5OP6n9108TB29_ItIogYE7esSxwRhZ1pF3NiEOWzwu7N1ENS0kXXob3z8mD13RL8KbW-qw8kZlYGUEzSo1vmMm0oFzkDGkQBdRXlBnrHaLkRhr7qNK-ED6G9vWCgQ4lsvAE2oXd6RSIsW4KVYGSIowjqVEKLQLXICO33lRoZA86TjTpoibESBup9OB6I9vUXlKXeVAFztfL1OoNxiSXMTv7e-k57LnDqpGEF9BelWu8hF39uZouy6vqpL8AeDyquQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLamgQRceGyI8QwSR7q16SPpeTANMcoOA-1WpamDJkY3dRu_n6TtBhJcuEWKolROajv2Z38ANwFHO9GmzvISxS0v5J6VhMK2qHSEdijSIC14yF4HLIr4eBwOa3C7qYVBxAJ8hm0zLHL56UyuTKiswwyLgacV7pZhzqqqtdZ6NzDNo6q8pWOHnW73rmugW0G7Wlbxp_xSuoUl6e3_7xsOoPldkkeGG2NzCDXMjmDvRzfBBjxHZdsLkZN5Cf8nH8Ufa6aJAbi_kUkRQ8CUvGOe4ZTMy1i7mBKDLZ9lem8iqj4lTXjp3Y-6faviS7Am2v4sLZaoUChGE0qVrXyVSEYDlvpIHc-htqC-0v4h8kBxpZ9V0mbMRle_X9CRLkffPYZ6pnc6AaK0o0KFIzhzQ49L5Ewyx1BkpNqfchVvQcOIJp6XLTHiSiotuF7LNtbX1OQeRIaz1SLWmsP3ecBD__TvpVew0x89DeLBQ_R4Brvm4Epc4TnUl_kKL2Bbfi4ni_yyOPUviMSuAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Nonlinear+process+monitoring+using+improved+kernel+principal+component+analysis&rft.au=Chihang+Wei&rft.au=Junghui+Chen&rft.au=Zhihuan+Song&rft.date=2016-05-01&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=5832&rft.epage=5843&rft_id=info:doi/10.1109%2FCCDC.2016.7532042&rft.externalDocID=7532042