Nonlinear process monitoring using improved kernel principal component analysis
Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research...
Gespeichert in:
| Veröffentlicht in: | Chinese Control and Decision Conference S. 5832 - 5843 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2016
|
| Schlagworte: | |
| ISSN: | 1948-9447 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research literatures. In this paper, a novel methodology to learn a data-dependent kernel function automatically from specific input data is proposed and the improved kernel principal component analysis is obtained through using the data-dependent kernel function in traditional KPCA. The learning procedure includes two parts: learning a kernel matrix and approximating a kernel function. The kernel matrix is learned via a manifold learning method named maximum variance unfolding (MVU) which considers underlying manifold structure to ensure that principal components are linear in kernel space. Then, a kernel function is approximated via generalized Nystrom formula. The effectiveness of the improved KPCA model is confirmed by a numerical simulation and the Tennessee Eastman (TE) process benchmark. |
|---|---|
| AbstractList | Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on kernel function, yet methods to choose an appropriate kernel function among infinite ones have only been sporadically touched in the research literatures. In this paper, a novel methodology to learn a data-dependent kernel function automatically from specific input data is proposed and the improved kernel principal component analysis is obtained through using the data-dependent kernel function in traditional KPCA. The learning procedure includes two parts: learning a kernel matrix and approximating a kernel function. The kernel matrix is learned via a manifold learning method named maximum variance unfolding (MVU) which considers underlying manifold structure to ensure that principal components are linear in kernel space. Then, a kernel function is approximated via generalized Nystrom formula. The effectiveness of the improved KPCA model is confirmed by a numerical simulation and the Tennessee Eastman (TE) process benchmark. |
| Author | Chihang Wei Zhihuan Song Junghui Chen |
| Author_xml | – sequence: 1 givenname: Chihang surname: Wei fullname: Wei, Chihang – sequence: 2 givenname: Junghui surname: Chen fullname: Chen, Junghui – sequence: 3 givenname: Zhihuan surname: Song fullname: Song, Zhihuan |
| BookMark | eNotkMtOwzAQRQ0Cibb0AxCbLNmkzNjxI0sUnlJFN7CO3HSMDIld4hSpf0-qdjN3cY-ujmbKLkIMxNgNwgIRyvuqeqwWHFAttBQcCn7G5qU2WCgtSo0Cz9kEy8LkZVHoKzZN6RtAKQEwYav3GFofyPbZto8NpZR1Mfgh9j58Zbt0uL4bqz_aZD_UB2pH0IfGb22bNbHbji5hyGyw7T75dM0unW0TzU85Y5_PTx_Va75cvbxVD8vcIxdDrteutE7zNecOnHTrRnOlN5I4FsjBcunAABnljCsAG9AaSCilCBthSIoZuzvujmq_O0pD3fnUUNvaQHGXajRCSqNMeUBvj6gnonqU72y_r0-vEv_4EV91 |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SP 8FD L7M |
| DOI | 10.1109/CCDC.2016.7532042 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781467397131 146739713X 1467397148 9781467397148 |
| EISSN | 1948-9447 |
| EndPage | 5843 |
| ExternalDocumentID | 7532042 |
| Genre | orig-research |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SP 8FD L7M |
| ID | FETCH-LOGICAL-i123t-7bf9af72b22f0f5fbc7267d5e214120a25f080e86f8f401c0770e3666e1c38e53 |
| IEDL.DBID | RIE |
| IngestDate | Fri Jul 11 08:31:31 EDT 2025 Wed Aug 27 02:12:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-7bf9af72b22f0f5fbc7267d5e214120a25f080e86f8f401c0770e3666e1c38e53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1835586895 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_7532042 proquest_miscellaneous_1835586895 |
| PublicationCentury | 2000 |
| PublicationDate | 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 20160501 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.6088088 |
| Snippet | Kernel principal component analysis (KPCA) has become a popular technique for process monitoring in recent years. However, the performance largely depends on... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 5832 |
| SubjectTerms | Approximation Eigenvalues and eigenfunctions Fault Detection Kernel Kernel Function Approximation Kernel functions Kernels Learning Linear programming Manifold Learning Manifolds Mathematical models Monitoring Nonlinear Process Monitoring Principal component analysis Training |
| Title | Nonlinear process monitoring using improved kernel principal component analysis |
| URI | https://ieeexplore.ieee.org/document/7532042 https://www.proquest.com/docview/1835586895 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEuPDbEeClIHOnWps2j58LEAY0dAO1WpamDJkY3dRu_n6TtBhJcuEWKolROajv2588AN1yin1lT50WZkV4Uy8jLYuV7VAfKOhQ5z6s-ZK-PYjSSk0k8bsHtthYGESvwGfbdsMrl53O9dqGygXBdDCKrcHeE4HWt1kbrckcd1WQtAz8eJMld4oBbvN8sarqn_FK5lR0ZHvzvCw6h-12QR8ZbU3MELSyOYf8Hl2AHnkY16YUqyaIG_5OP6n9108TB29_ItIogYE7esSxwRhZ1pF3NiEOWzwu7N1ENS0kXXob3z8mD13RL8KbW-qw8kZlYGUEzSo1vmMm0oFzkDGkQBdRXlBnrHaLkRhr7qNK-ED6G9vWCgQ4lsvAE2oXd6RSIsW4KVYGSIowjqVEKLQLXICO33lRoZA86TjTpoibESBup9OB6I9vUXlKXeVAFztfL1OoNxiSXMTv7e-k57LnDqpGEF9BelWu8hF39uZouy6vqpL8AeDyquQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLamgQRceGyI8QwSR7q16SPpeTANMcoOA-1WpamDJkY3dRu_n6TtBhJcuEWKolROajv2Z38ANwFHO9GmzvISxS0v5J6VhMK2qHSEdijSIC14yF4HLIr4eBwOa3C7qYVBxAJ8hm0zLHL56UyuTKiswwyLgacV7pZhzqqqtdZ6NzDNo6q8pWOHnW73rmugW0G7Wlbxp_xSuoUl6e3_7xsOoPldkkeGG2NzCDXMjmDvRzfBBjxHZdsLkZN5Cf8nH8Ufa6aJAbi_kUkRQ8CUvGOe4ZTMy1i7mBKDLZ9lem8iqj4lTXjp3Y-6faviS7Am2v4sLZaoUChGE0qVrXyVSEYDlvpIHc-htqC-0v4h8kBxpZ9V0mbMRle_X9CRLkffPYZ6pnc6AaK0o0KFIzhzQ49L5Ewyx1BkpNqfchVvQcOIJp6XLTHiSiotuF7LNtbX1OQeRIaz1SLWmsP3ecBD__TvpVew0x89DeLBQ_R4Brvm4Epc4TnUl_kKL2Bbfi4ni_yyOPUviMSuAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Nonlinear+process+monitoring+using+improved+kernel+principal+component+analysis&rft.au=Chihang+Wei&rft.au=Junghui+Chen&rft.au=Zhihuan+Song&rft.date=2016-05-01&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=5832&rft.epage=5843&rft_id=info:doi/10.1109%2FCCDC.2016.7532042&rft.externalDocID=7532042 |