Adaptive power series solution for second order ordinary differential equations with initial conditions

Solution of differential equations is essential to analyze problems in many academic fields. Time varying solution schemes for differential equations are required in nonstationary environments. Numeric solutions are essential for nonlinear differential equations where explicit solutions do not exist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15) s. 1 - 6
Hlavní autoři: Haweel, Tarek I., Alhasan, A. M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.02.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Solution of differential equations is essential to analyze problems in many academic fields. Time varying solution schemes for differential equations are required in nonstationary environments. Numeric solutions are essential for nonlinear differential equations where explicit solutions do not exist, especially, for second and higher orders. This paper proposes efficient adaptive numeric solutions for second order ordinary differential equations (ODE) with initial conditions. The proposed technique implements neural networks with transfer functions that follow a power series. The proposed technique does not use sigmoid or tanch non-linear transfer functions commonly employed in conventional neural networks at the output. Instead, linear transfer functions are adopted which leads to explicit power series formulae for the ODE solution. This provides continuous solutions and enables interpolation and extrapolation. The efficient and accurate solutions provided by the proposed technique are illustrated through simulated examples. It is shown that the performance of the proposed technique outperforms existing conventional methods.
AbstractList Solution of differential equations is essential to analyze problems in many academic fields. Time varying solution schemes for differential equations are required in nonstationary environments. Numeric solutions are essential for nonlinear differential equations where explicit solutions do not exist, especially, for second and higher orders. This paper proposes efficient adaptive numeric solutions for second order ordinary differential equations (ODE) with initial conditions. The proposed technique implements neural networks with transfer functions that follow a power series. The proposed technique does not use sigmoid or tanch non-linear transfer functions commonly employed in conventional neural networks at the output. Instead, linear transfer functions are adopted which leads to explicit power series formulae for the ODE solution. This provides continuous solutions and enables interpolation and extrapolation. The efficient and accurate solutions provided by the proposed technique are illustrated through simulated examples. It is shown that the performance of the proposed technique outperforms existing conventional methods.
Author Alhasan, A. M.
Haweel, Tarek I.
Author_xml – sequence: 1
  givenname: Tarek I.
  surname: Haweel
  fullname: Haweel, Tarek I.
  email: t.haweel@mu.edu.sa
  organization: Biomed. Technol. Syst. Dept., Majmaah Univ., Majmaah, Saudi Arabia
– sequence: 2
  givenname: A. M.
  surname: Alhasan
  fullname: Alhasan, A. M.
  email: am.alhasan.sq@gmail.com
  organization: Phys. Dept., Shaqra Univ., Hurrymila'a, Saudi Arabia
BookMark eNotj8tOwzAQRY0ECyj9gm78AwkeP5p4GUU8KlUCCVhXTjyGkYIdkpSKvyct3cxIR-eO5t6wy5giMrYCkQMIe7ep69eXKpcCTF6IEhTYC7a0RQm6sHZtlCyv2UflXT_RD_I-HXDgIw6EIx9Tt58oRR7SkbUpep4GPwvzpOiGX-4pBBwwTuQ6jt97d_RHfqDpk1OkEz7m6MRv2VVw3YjL816w94f7t_op2z4_bupqmxFINWVGmiAb3QZoldMFSNBN04qytMFJ3YRgrDIOtF-r4EOpCiG8EMY7q9FAUGrBVv93CRF3_UBf86-7c331B4IUVwg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSPA.2015.7081319
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479965328
1479965324
EndPage 6
ExternalDocumentID 7081319
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-525f2b4cf1c3a471214bbc0889fa24bff5935a14d63fdf83700d005da94e51f33
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-525f2b4cf1c3a471214bbc0889fa24bff5935a14d63fdf83700d005da94e51f33
PageCount 6
ParticipantIDs ieee_primary_7081319
PublicationCentury 2000
PublicationDate 20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 20150201
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15)
PublicationTitleAbbrev ICCSPA
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5664628
Snippet Solution of differential equations is essential to analyze problems in many academic fields. Time varying solution schemes for differential equations are...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Extrapolation
Genetic algorithms
Interpolation
LMS adaptive algorithm
Mathematical model
Neural network
Neural networks
Power series
Second Order Ordinary differential equations
Transfer functions
Title Adaptive power series solution for second order ordinary differential equations with initial conditions
URI https://ieeexplore.ieee.org/document/7081319
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDots0m2cexFIteSkGF3kpeIwVpax_-_s5ktxXBi7Asy7AhkEny5fHNN4w9WFAGF27ogSI1iRJOJcbSnatJQ-asEaKEmGwiH42KyaQcN9jjIRYmhBDJZ6FDn_Eu3y_clo7KujnilySNz6M8z6pYrVpISPTK7stg8DruE1tLd-o_f6VMiYgxPP1fXWes_RN6x8cHUDlnjTBvsY--N0ual_iSkppx6jZhzffdhuPCE224s_U8SmnSO8bZ8n3-ExzHnzx8Vbrea06nr3xGvCE0U7mKuNVm78Ont8FzUmdISGaIOBvcRWpIrXIgnDQIM6lQ1jpiLoFJlQXQpdRGKJ9J8EA6Nz2Pw86bUgUtQMoL1pwv5uGS8VwLq2xmCiXpCQZRTEKBRR1kOocr1qJGmi4rEYxp3T7Xf5tv2An5oaI337LmZrUNd-zYfW9m69V99NwOlpuevg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXh022aT7ONYiqXFWgpW6K3kKQVpax_-fmey24rgRViWZdgQyCT58vjmG0IetBcKFm7ggSxWkWBGRErjnauKXWK0Yiz3IdlEOhxmk0k-qpDHfSyMcy6Qz1wDP8Ndvl2YLR6VNVPAL44anwdSiLhVRGuVUkKslTf7nc7rqI18Ldko__2VNCVgRvfkf7WdkvpP8B0d7WHljFTcvEbe21YtcWaiS0xrRrHjuDXddRwKS0-wwd7W0iCmie8QaUt3GVBgJH9Q91koe68pnr_SGTKHwIzlCupWnbx1n8adXlTmSIhmgDkb2EdKH2thPDNcAdDETGhtkLvkVSy09zLnUjFhE-6tR6WbloWBZ1UunGSe83NSnS_m7oLQVDItdKIywfFxCnCM-wyKGp_I1F-SGjbSdFnIYEzL9rn623xPjnrjl8F00B8-X5Nj9ElBdr4h1c1q627JofnazNaru-DFbwMeogU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Communications%2C+Signal+Processing%2C+and+their+Applications+%28ICCSPA%2715%29&rft.atitle=Adaptive+power+series+solution+for+second+order+ordinary+differential+equations+with+initial+conditions&rft.au=Haweel%2C+Tarek+I.&rft.au=Alhasan%2C+A.+M.&rft.date=2015-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCSPA.2015.7081319&rft.externalDocID=7081319