Constrained optimization problem solved by dynamic constrained NSGA-III multiobjective optimizational techniques

This paper proposes dynamic constrained version of NSGA-III to handle constraints for constrained optimization problems (COPs). The methodology first constructs a dynamic constrained multi-objective optimization problem (DCMOP) equivalent to the COP by converting the constraints into some violation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation s. 2923 - 2928
Hlavní autoři: Xi Li, Sanyou Zeng, Sha Qin, Kunqi Liu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2015
Témata:
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes dynamic constrained version of NSGA-III to handle constraints for constrained optimization problems (COPs). The methodology first constructs a dynamic constrained multi-objective optimization problem (DCMOP) equivalent to the COP by converting the constraints into some violation objective functions and gradually shrinking the initially broadened boundary to the original one. Then a dynamic constrained version of the state-of-the-art NSGA-III is implemented to solve the DCMOP. Differential evolution (DE) is used as the evolutionary algorithm to generate offspring. Experimental results show that it is competitive to peer algorithm referred in this paper, and has better performance on global search.
ISSN:1089-778X
DOI:10.1109/CEC.2015.7257252