Sequential sensing with model mismatch

We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measuremen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / IEEE International Symposium on Information Theory s. 1650 - 1654
Hlavní autori: Song, Ruiyang, Xie, Yao, Pokutta, Sebastian
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2015
Predmet:
ISSN:2157-8095, 2157-8117
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix Σ in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme.
AbstractList We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix capital sigma in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme.
We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix Σ in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme.
Author Xie, Yao
Pokutta, Sebastian
Song, Ruiyang
Author_xml – sequence: 1
  givenname: Ruiyang
  surname: Song
  fullname: Song, Ruiyang
  email: songry12@mails.tsinghua.edu.cn
  organization: Electronic Engineering, Tsinghua University, China
– sequence: 2
  givenname: Yao
  surname: Xie
  fullname: Xie, Yao
  email: yao.xie@isye.gatech.edu
  organization: Industrial and Systems Engineering, Georgia Institute of Technology, USA
– sequence: 3
  givenname: Sebastian
  surname: Pokutta
  fullname: Pokutta, Sebastian
  email: sebastian.pokutta@isye.gatech.edu
  organization: Industrial and Systems Engineering, Georgia Institute of Technology, USA
BookMark eNo1kD1PwzAYhA0qEm3pD0AsmRBLgl_b8ceIKj4iVWJomSPHeUONEqfEqRD_nkgt091wOj13CzILfUBCboFmANQ8FttilzEKeaaYZorLC7IySoOQiitFBVySOYNcpRpAzf49Nfk1WcT4RSlXnLI5ud_i9xHD6G2bRAzRh8_kx4_7pOtrbJPOx86Obn9DrhrbRlyddUk-Xp5367d08_5arJ82qQfGx5RVusFGGAe8kpXizmjqHDgKnIKwtWjA1bqWkhkxAQkpkVdONAZBS-YkX5KHU-9h6CeuOJYTgcO2tQH7Yyxh2salpLmeonenqEfE8jD4zg6_5fkN_gcODFFG
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ISIT.2015.7282736
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467377041
146737704X
EISSN 2157-8117
EndPage 1654
ExternalDocumentID 7282736
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i123t-2b8fef49c13b6b73c980cc1c013014ad4f1cd8d66294157466e3bc4f9e1862c63
IEDL.DBID RIE
ISSN 2157-8095
IngestDate Thu Jul 10 23:32:02 EDT 2025
Wed Aug 27 02:16:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-2b8fef49c13b6b73c980cc1c013014ad4f1cd8d66294157466e3bc4f9e1862c63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770366058
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1770366058
ieee_primary_7282736
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.5647377
Snippet We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1650
SubjectTerms Compressed sensing
Covariance
Covariance matrices
Detection
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Entropy
Estimates
Gaussian
high-dimensional statistics
Information theory
Mutual information
Noise measurement
Sensors
sequential methods
sketching algorithms
Title Sequential sensing with model mismatch
URI https://ieeexplore.ieee.org/document/7282736
https://www.proquest.com/docview/1770366058
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMnHhtivFQkxIluTZvmcUZMTELTpA1pt6pxXJiEOrQHv5-k68YBLtx6SZXEsR3n-2wD3FHsm1AxDFVu05AXLmZVKPIwl3GK3KKyVJXMf5GjkZrN9LgBD_tcGCKqyGfU858Vlm8XuPFPZX3p4gOZiCY0pZTbXK2d1U3cSfWIgfNg3urqtEYwWaT7w8lw6klcaa_-Qd1J5Zf5rXzK4Oh_szmGzk9yXjDeu50TaFB5Cke77gxBraxtuJ9ULGmnwR_BytPUy7fAv7oGVfObwMnXXVbxvQOvg6fp43NYd0UI587LrMPYqIIKrpElRhiZoFYRIkMPQTKeW14wtMoKEWvnnCUXghKDvNDEXPSCIjmDVrko6RwCo5zCa005pTG3xgXKKadIxu5WoiNuVBfaftnZ57bwRVavuAu3u33L3GQ9wpCXtNisMiZ9PS-PtF78PfQSDr0gtlyrK2itlxu6hgP8Ws9Xy5tKot8OjZ9r
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQILTgA0xnkVCnOhY2jSPM2LaxJgmbUi7Va3jwiTUoT34_SRdNw5w4dZLqiSO7TjfZxvglgLXhIqhrxIT-TyzMatCkfiJDCLkBpWhomR-Xw4GajLRwwrcb3NhiKggn1HLfRZYvpnhyj2VPUgbH8hQ7MBuxHnA1tlaG7sb2rPqMAPrw5zd1VGJYbK2fuiNemNH44pa5S_KXiq_DHDhVTq1_83nEBo_6XnecOt4jqBC-THUNv0ZvFJd63A3KnjSVoc_vIUjqudvnnt39Yr2N56VsL2u4nsDXjtP48euX_ZF8KfWzyz9IFUZZVwjC1ORyhC1aiMydCAk44nhGUOjjBCBtu5ZciEoTJFnmpiNX1CEJ1DNZzmdgpcqq_JaU0JRwE1qQ-WIU1sG9l6i2zxVTai7Zcef69IXcbniJtxs9i22k3UYQ5LTbLWImXQVvRzWevb30GvY745f-nG_N3g-hwMnlDXz6gKqy_mKLmEPv5bTxfyqkO43jJWisg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Sequential+sensing+with+model+mismatch&rft.au=Song%2C+Ruiyang&rft.au=Xie%2C+Yao&rft.au=Pokutta%2C+Sebastian&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=2157-8095&rft.spage=1650&rft.epage=1654&rft_id=info:doi/10.1109%2FISIT.2015.7282736&rft.externalDocID=7282736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon