Sequential sensing with model mismatch
We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measuremen...
Uložené v:
| Vydané v: | Proceedings / IEEE International Symposium on Information Theory s. 1650 - 1654 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2015
|
| Predmet: | |
| ISSN: | 2157-8095, 2157-8117 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix Σ in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme. |
|---|---|
| AbstractList | We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix capital sigma in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme. We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and the assumed model, which may be a sample estimate. In particular, we consider a setup where the signal is low-rank Gaussian and the measurements are taken in the directions of eigenvectors of the covariance matrix Σ in a decreasing order of eigenvalues. We establish a set of performance bounds when a mismatched covariance matrix equation is used, in terms of the gap of signal posterior entropy, as well as the additional amount of power required to achieve the same signal recovery precision. Based on this, we further study how to choose an initialization for Info-Greedy Sensing using the sample covariance matrix, or using an efficient covariance sketching scheme. |
| Author | Xie, Yao Pokutta, Sebastian Song, Ruiyang |
| Author_xml | – sequence: 1 givenname: Ruiyang surname: Song fullname: Song, Ruiyang email: songry12@mails.tsinghua.edu.cn organization: Electronic Engineering, Tsinghua University, China – sequence: 2 givenname: Yao surname: Xie fullname: Xie, Yao email: yao.xie@isye.gatech.edu organization: Industrial and Systems Engineering, Georgia Institute of Technology, USA – sequence: 3 givenname: Sebastian surname: Pokutta fullname: Pokutta, Sebastian email: sebastian.pokutta@isye.gatech.edu organization: Industrial and Systems Engineering, Georgia Institute of Technology, USA |
| BookMark | eNo1kD1PwzAYhA0qEm3pD0AsmRBLgl_b8ceIKj4iVWJomSPHeUONEqfEqRD_nkgt091wOj13CzILfUBCboFmANQ8FttilzEKeaaYZorLC7IySoOQiitFBVySOYNcpRpAzf49Nfk1WcT4RSlXnLI5ud_i9xHD6G2bRAzRh8_kx4_7pOtrbJPOx86Obn9DrhrbRlyddUk-Xp5367d08_5arJ82qQfGx5RVusFGGAe8kpXizmjqHDgKnIKwtWjA1bqWkhkxAQkpkVdONAZBS-YkX5KHU-9h6CeuOJYTgcO2tQH7Yyxh2salpLmeonenqEfE8jD4zg6_5fkN_gcODFFG |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ISIT.2015.7282736 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781467377041 146737704X |
| EISSN | 2157-8117 |
| EndPage | 1654 |
| ExternalDocumentID | 7282736 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IK 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i123t-2b8fef49c13b6b73c980cc1c013014ad4f1cd8d66294157466e3bc4f9e1862c63 |
| IEDL.DBID | RIE |
| ISSN | 2157-8095 |
| IngestDate | Thu Jul 10 23:32:02 EDT 2025 Wed Aug 27 02:16:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-2b8fef49c13b6b73c980cc1c013014ad4f1cd8d66294157466e3bc4f9e1862c63 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1770366058 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1770366058 ieee_primary_7282736 |
| PublicationCentury | 2000 |
| PublicationDate | 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Symposium on Information Theory |
| PublicationTitleAbbrev | ISIT |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0037302 |
| Score | 1.5647377 |
| Snippet | We characterize the performance of sequential information guided sensing, Info-Greedy Sensing [1], when there is a mismatch between the true signal model and... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1650 |
| SubjectTerms | Compressed sensing Covariance Covariance matrices Detection Eigenvalues Eigenvalues and eigenfunctions Eigenvectors Entropy Estimates Gaussian high-dimensional statistics Information theory Mutual information Noise measurement Sensors sequential methods sketching algorithms |
| Title | Sequential sensing with model mismatch |
| URI | https://ieeexplore.ieee.org/document/7282736 https://www.proquest.com/docview/1770366058 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMnHhtivFQkxIluTZvmcUZMTELTpA1pt6pxXJiEOrQHv5-k68YBLtx6SZXEsR3n-2wD3FHsm1AxDFVu05AXLmZVKPIwl3GK3KKyVJXMf5GjkZrN9LgBD_tcGCKqyGfU858Vlm8XuPFPZX3p4gOZiCY0pZTbXK2d1U3cSfWIgfNg3urqtEYwWaT7w8lw6klcaa_-Qd1J5Zf5rXzK4Oh_szmGzk9yXjDeu50TaFB5Cke77gxBraxtuJ9ULGmnwR_BytPUy7fAv7oGVfObwMnXXVbxvQOvg6fp43NYd0UI587LrMPYqIIKrpElRhiZoFYRIkMPQTKeW14wtMoKEWvnnCUXghKDvNDEXPSCIjmDVrko6RwCo5zCa005pTG3xgXKKadIxu5WoiNuVBfaftnZ57bwRVavuAu3u33L3GQ9wpCXtNisMiZ9PS-PtF78PfQSDr0gtlyrK2itlxu6hgP8Ws9Xy5tKot8OjZ9r |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQILTgA0xnkVCnOhY2jSPM2LaxJgmbUi7Va3jwiTUoT34_SRdNw5w4dZLqiSO7TjfZxvglgLXhIqhrxIT-TyzMatCkfiJDCLkBpWhomR-Xw4GajLRwwrcb3NhiKggn1HLfRZYvpnhyj2VPUgbH8hQ7MBuxHnA1tlaG7sb2rPqMAPrw5zd1VGJYbK2fuiNemNH44pa5S_KXiq_DHDhVTq1_83nEBo_6XnecOt4jqBC-THUNv0ZvFJd63A3KnjSVoc_vIUjqudvnnt39Yr2N56VsL2u4nsDXjtP48euX_ZF8KfWzyz9IFUZZVwjC1ORyhC1aiMydCAk44nhGUOjjBCBtu5ZciEoTJFnmpiNX1CEJ1DNZzmdgpcqq_JaU0JRwE1qQ-WIU1sG9l6i2zxVTai7Zcef69IXcbniJtxs9i22k3UYQ5LTbLWImXQVvRzWevb30GvY745f-nG_N3g-hwMnlDXz6gKqy_mKLmEPv5bTxfyqkO43jJWisg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Sequential+sensing+with+model+mismatch&rft.au=Song%2C+Ruiyang&rft.au=Xie%2C+Yao&rft.au=Pokutta%2C+Sebastian&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=2157-8095&rft.spage=1650&rft.epage=1654&rft_id=info:doi/10.1109%2FISIT.2015.7282736&rft.externalDocID=7282736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon |