Index tracking using data-mining techniques and mixed-binary linear programming

Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) S. 1208 - 1212
Hauptverfasser: Strub, Oliver, Baumann, Philipp
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2015
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
AbstractList Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
Author Baumann, Philipp
Strub, Oliver
Author_xml – sequence: 1
  givenname: Oliver
  surname: Strub
  fullname: Strub, Oliver
  email: oliver.strub@pqm.unibe.ch
  organization: Dept. of Bus. Adm., Univ. of Bern, Bern, Switzerland
– sequence: 2
  givenname: Philipp
  surname: Baumann
  fullname: Baumann, Philipp
  email: philipp.baumann@berkeley.edu
  organization: Dept. of Ind. Eng. & Oper. Res., UC Berkeley, Berkeley, CA, USA
BookMark eNotT0tOwzAUNBIsoPQAiI0vkOBnx469RFWASEXdwLry5yVYNG5xUqncnlR0M5_FjGbuyHXaJyTkAVgJwMxT2zTvJWcgy1poqYW5IktTa6jU7JlS5pZs2hTwRKds_XdMPT2OZwx2ssUQ01lP6L9S_DniSG0KdIgnDIWLyeZfuosJbaaHvO-zHeZAf09uOrsbcXnhBfl8aT5Wb8V689quntdFBC6mglvusRaOYSdBV4GBcUrVaOeZ6JkyACiVdMEZENApbbwIUHHBPas4M2JBHv97IyJuDzkO857t5ab4Az_IS_o
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEEM.2015.7385839
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467380669
1467380660
EndPage 1212
ExternalDocumentID 7385839
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-2a2ce73b0ef5184d019b667ea858ec06911e565bdb9131f689c3d14232c042093
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:09 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-2a2ce73b0ef5184d019b667ea858ec06911e565bdb9131f689c3d14232c042093
PageCount 5
ParticipantIDs ieee_primary_7385839
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
PublicationTitleAbbrev IEEM
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9308555
Snippet Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that...
SourceID ieee
SourceType Publisher
StartPage 1208
SubjectTerms Correlation
Cross validation
data mining
index tracking
Indexes
Investment
mixed-integer linear programming
Planning
Portfolios
Principal component analysis
Testing
Title Index tracking using data-mining techniques and mixed-binary linear programming
URI https://ieeexplore.ieee.org/document/7385839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtJvNYzdnsSho7UGlt5LHbOmhW9luRf-9SXapCF68hZCQMCH5ZjLfzCB0bTXzOJUKQjnVhFsliWJcEyZYWuSp0RCrRLw9ZpNJPpupaQfd7GJhACCSz2AYmtGX79Z2G77KRjHzClNd1M0y2cRqtY5KmqiRt46eAldLDNtxvwqmRLwYH_xvpUM0-Am8w9MdpByhDpR99PwQMhriutI2_GvjQFVf4EDtJKtY3gHvErFusC4dXi0_wQWTV1dfOKiRusItD8tPWAzQ6_ju5faetHUQyNLjSk1SnVrImEmgEN4gc14rM1JmoP0ewSbSv1fg9TLjjKKMFjJXljkaPLDWX8lEsWPUK9clnCAsBJPCOelBiXMoCpNyA0LnnCZFpiE_Rf0gjPl7k-pi3srh7O_uc7Qf5N2wOy5Qr662cIn27Ee93FRX8Xy-AYuzk3c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNGTGjD-tgePFtZ13dazkUAcyAENN9K1b4QDw4xh9L-3HQvGxIu3Zmmz5TXd917f994HcK8VtzjlC8oCpmigZUglDxTlgvtZ7KcKK5WItyQajeLpVI4b8LCrhUHEinyGHTescvlmpTfuqqxbdV7hcg_2nXKW2FZr1alK5smujY-Gjq0lOvXMX5IpFWL0jv_3rhNo_5TekfEOVE6hgXkLXgaupyEpC6XdzTZxZPU5ceROuqwEHsiuFeuaqNyQ5eITjQt6VfFFnCOpClIzseyCeRtee0-Txz6tlRDowiJLSX3la4x46mEmbEhmrF-WhmGEyn4jai-0fyy0nllqUsk4y8JYam6Yy8Fqeyg9yc-gma9yPAciBA-FMaGFpSDALEv9IEWh4oB5WaQwvoCWM8bsfdvsYlbb4fLvx3dw2J8Mk1kyGD1fwZGz_ZbrcQ3NstjgDRzoj3KxLm6rvfoGbNKWwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Industrial+Engineering+and+Engineering+Management+%28IEEM%29&rft.atitle=Index+tracking+using+data-mining+techniques+and+mixed-binary+linear+programming&rft.au=Strub%2C+Oliver&rft.au=Baumann%2C+Philipp&rft.date=2015-12-01&rft.pub=IEEE&rft.spage=1208&rft.epage=1212&rft_id=info:doi/10.1109%2FIEEM.2015.7385839&rft.externalDocID=7385839