WAVELET2VEC: A Filter Bank Masked Autoencoder for EEG-Based Seizure Subtype Classification
Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches face two challenges in such applications: 1) convolutional or recurrent neural network based models have difficulty learning long-term dependenc...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
04.06.2023
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches face two challenges in such applications: 1) convolutional or recurrent neural network based models have difficulty learning long-term dependencies; and, 2) there are not enough labeled seizure sub-type data for training such models. This paper proposes a Transformer-based self-supervised learning model for EEG-based seizure subtype classification, which copes well with these two challenges. Filter bank analysis is first employed to improve Vision Transformer as a Wavelet Transformer (WaT) encoder, which generates multi-grained feature representations of EEG signals. Then, self-supervised learning is used to pre-train WaT from unlabeled EEG data. Experiments on two public datasets demonstrated that Wavelet2Vec outperformed several other supervised and self-supervised models in cross-subject seizure subtype classification. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP49357.2023.10097183 |