WAVELET2VEC: A Filter Bank Masked Autoencoder for EEG-Based Seizure Subtype Classification

Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches face two challenges in such applications: 1) convolutional or recurrent neural network based models have difficulty learning long-term dependenc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5
Hlavní autori: Peng, Ruimin, Zhao, Changming, Xu, Yifan, Jiang, Jun, Kuang, Guangtao, Shao, Jianbo, Wu, Dongrui
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 04.06.2023
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches face two challenges in such applications: 1) convolutional or recurrent neural network based models have difficulty learning long-term dependencies; and, 2) there are not enough labeled seizure sub-type data for training such models. This paper proposes a Transformer-based self-supervised learning model for EEG-based seizure subtype classification, which copes well with these two challenges. Filter bank analysis is first employed to improve Vision Transformer as a Wavelet Transformer (WaT) encoder, which generates multi-grained feature representations of EEG signals. Then, self-supervised learning is used to pre-train WaT from unlabeled EEG data. Experiments on two public datasets demonstrated that Wavelet2Vec outperformed several other supervised and self-supervised models in cross-subject seizure subtype classification.
AbstractList Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches face two challenges in such applications: 1) convolutional or recurrent neural network based models have difficulty learning long-term dependencies; and, 2) there are not enough labeled seizure sub-type data for training such models. This paper proposes a Transformer-based self-supervised learning model for EEG-based seizure subtype classification, which copes well with these two challenges. Filter bank analysis is first employed to improve Vision Transformer as a Wavelet Transformer (WaT) encoder, which generates multi-grained feature representations of EEG signals. Then, self-supervised learning is used to pre-train WaT from unlabeled EEG data. Experiments on two public datasets demonstrated that Wavelet2Vec outperformed several other supervised and self-supervised models in cross-subject seizure subtype classification.
Author Wu, Dongrui
Zhao, Changming
Xu, Yifan
Kuang, Guangtao
Shao, Jianbo
Peng, Ruimin
Jiang, Jun
Author_xml – sequence: 1
  givenname: Ruimin
  surname: Peng
  fullname: Peng, Ruimin
  organization: Huazhong University of Science and Technology,Wuhan,China
– sequence: 2
  givenname: Changming
  surname: Zhao
  fullname: Zhao, Changming
  organization: Huazhong University of Science and Technology,Wuhan,China
– sequence: 3
  givenname: Yifan
  surname: Xu
  fullname: Xu, Yifan
  organization: Huazhong University of Science and Technology,Wuhan,China
– sequence: 4
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  organization: Children's Hospital,Wuhan,China
– sequence: 5
  givenname: Guangtao
  surname: Kuang
  fullname: Kuang, Guangtao
  organization: Children's Hospital,Wuhan,China
– sequence: 6
  givenname: Jianbo
  surname: Shao
  fullname: Shao, Jianbo
  organization: Children's Hospital,Wuhan,China
– sequence: 7
  givenname: Dongrui
  surname: Wu
  fullname: Wu, Dongrui
  organization: Huazhong University of Science and Technology,Wuhan,China
BookMark eNo1kFFLwzAUhaMouE3_gQ_xB7Tem7RN4ltXuilMFDqn-DJiewNxsx1N9zB_vQP16cD54PBxxuys7Vpi7AYhRgRz-1DkVfWcGJmqWICQMQIYhVqesDEqoTGTQqlTNhJSmQgNvF2wcQifAKBVokfs_TVflYtyKVZlccdzPvPbgXo-te2GP9qwoYbn-6Gjtu6aY--6npflPJracCQV-e99T7zafwyHHfFia0Pwztd28F17yc6d3Qa6-ssJe5mVy-I-WjzNj96LyCOaIXKusdpqSJ2TNaGRylFt0iZLkwad0wgidUZCRiBMWgNpmyhtDYIUEiXICbv-3fVEtN71_sv2h_X_EfIHQ71Ttg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49357.2023.10097183
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728163277
9781728163277
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10097183
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i119t-ffda8a805ff3ce1937fec95d654d1ff81025f9306e0295c0e8a478a9103231303
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ffda8a805ff3ce1937fec95d654d1ff81025f9306e0295c0e8a478a9103231303
PageCount 5
ParticipantIDs ieee_primary_10097183
PublicationCentury 2000
PublicationDate 2023-June-4
PublicationDateYYYYMMDD 2023-06-04
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-4
  day: 04
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2806895
Snippet Electroencephalogram (EEG) based seizure subtype classification plays an important role in clinical diagnostics. However, existing deep learning approaches...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain modeling
Deep learning
EEG
filter bank analysis
Filter banks
masked autoencoder
seizure subtype classification
Self-supervised learning
Training data
Transformers
Wavelet transforms
Title WAVELET2VEC: A Filter Bank Masked Autoencoder for EEG-Based Seizure Subtype Classification
URI https://ieeexplore.ieee.org/document/10097183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uiOiLt4l3Ivja2a5Jk_jWjU6FOQabc_gysuYEyqCTrfXBX2-SXdQHH3wJIVAK-UjOJef7DkK3AIS4vIaeEO0RQkNPKDMEQgnSCCSZhI4o3GHdLh-NRG9FVndcGABwxWdQt1P3lq9maWlTZeaEW8UjHlZQhbFoSdbaXLucEb6DblYimndPrbjf7xERUla3LcLr649_tVFxVqS9_8__H6DaNx8P9zaW5hBtQX6E9n5ICR6jt9d4mHSSQWOYtO5xjNuZfQbHTZlP8bNcTEHhuCxmVrZSmXXjquIkefCaxogp3Ifss5wDNreITcli1ynT1hA52GropZ0MWo_eqm-ClwWBKDytleSS-1TrMAXjoTENqaAqokQFWnPjU1AtTKwAfkPQ1AcuCeNSWG290Nq0E1TNZzmcIhzxMOIpj6SJAg2QEfctpoFiSpjQkNEzVLPbNH5fSmOM1zt0_sf6Bdq1YLhaK3KJqsW8hCu0nX4U2WJ-7QD9AsLnnjc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46xcuLt4l3I_ja2a5pm_hWR-eG3RhszuHLyJoTKINOttYHf71J7KY--OBLCIFCyUdyLjnfdxC6BSDE5DXkhEiLEM-1mFCDwwQjdYeTiWuIwnHQ7dLRiPVKsrrhwgCAKT6Dmp6at3wxSwqdKlMnXCseUXcdbejWWSVda3Xx0oDQLXRTymjetRthv98jzPWCmm4SXlt-_quRirEjzb1__sE-qn4z8nBvZWsO0Bpkh2j3h5jgEXp9CYdRHA3qw6hxj0PcTPVDOH7g2RR3-GIKAodFPtPClUKtK2cVR9Gj9aDMmMB9SD-KOWB1j-ikLDa9MnUVkQGuip6b0aDRssrOCVbqOCy3pBSccmp7UroJKB8tkJAwT_geEY6UVHkVnmQqWgC7zrzEBspJQDnT6nqutmrHqJLNMjhB2KeuTxPqcxUHKih9amtUHREIpoLDwDtFVb1N47cvcYzxcofO_li_RtutQScex-3u0zna0cCYyitygSr5vIBLtJm85-lifmXA_QQ0XqGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=WAVELET2VEC%3A+A+Filter+Bank+Masked+Autoencoder+for+EEG-Based+Seizure+Subtype+Classification&rft.au=Peng%2C+Ruimin&rft.au=Zhao%2C+Changming&rft.au=Xu%2C+Yifan&rft.au=Jiang%2C+Jun&rft.date=2023-06-04&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49357.2023.10097183&rft.externalDocID=10097183