Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension
Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction...
Uloženo v:
| Vydáno v: | 2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) s. 195 - 201 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm. |
|---|---|
| DOI: | 10.1109/ICDIIME59043.2023.00042 |