Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension

Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) s. 195 - 201
Hlavní autoři: Huang, Jiale, Dai, Jingtong, Li, Yanjin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm.
AbstractList Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm.
Author Huang, Jiale
Dai, Jingtong
Li, Yanjin
Author_xml – sequence: 1
  givenname: Jiale
  surname: Huang
  fullname: Huang, Jiale
  email: 602946539@qq.com
  organization: Hohai University,Nanjing,China
– sequence: 2
  givenname: Jingtong
  surname: Dai
  fullname: Dai, Jingtong
  email: 483608548@qq.com
  organization: Hohai University,Nanjing,China
– sequence: 3
  givenname: Yanjin
  surname: Li
  fullname: Li, Yanjin
  email: 2543737907@qq.com
  organization: Dalian Jiaotong University,Dalian,China
BookMark eNotj1FLwzAURiPog879A8G-j9Z7k7RNHkedWpwoU59HmtxugTYpbX3w3zuYTx-cAwe-G3YZYiDG7hEyRNAPdfVY12-bXIMUGQcuMgCQ_IItdamVyEFwoVBds92OJjKjPSYxJB_VOn3tyYRptUps9zPNNPpwSEx3iKOfj31iY5i8O9PPwcw-ztQPcTRd4nxPJxnDLbtqTTfR8n8X7Ptp81W9pNv357pab1OPqOe0Nc5pTYjomlxqa6jNjeSNFaAALApJqiwbJR0UBIhFUTjNLecGitMFEAt2d-56ItoPo-_N-LtH4FyXXIs_1f1OmQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDIIME59043.2023.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323818
EndPage 201
ExternalDocumentID 10229729
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303
IEDL.DBID RIE
IngestDate Wed Sep 13 05:31:09 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303
PageCount 7
ParticipantIDs ieee_primary_10229729
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle 2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME)
PublicationTitleAbbrev ICDIIME
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8411841
Snippet Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm...
SourceID ieee
SourceType Publisher
StartPage 195
SubjectTerms AFC Data
Classification algorithms
Clustering algorithms
Data mining
Dimensionality reduction
Interference
K-means
PCA
Spatiotemporal clustering algorithm
Spatiotemporal phenomena
Visualization
Title Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension
URI https://ieeexplore.ieee.org/document/10229729
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePCkYsVvcvA2uqVpmyZHmRsOdQy_2G3k41UHWyuz8-83STvFgwdvIQRCXsj7yu_9HkKXhsjUUJ6GOlOpy1al9s0RCJn1FqjKwTCf0H-5y8ZjPp2KSVOs7mthAMCDz6Drhv4v35R67VJlPRedCOsNtlAry1hdrNVgtiIieqP-9Wh0P0gFSeKuawvuqTjpr74p3mwMd_-54R4Kfgrw8OTbtOyjLSgO0MMGJYfLAk_6V-HtEqyh6XSwXqwd34FdiuXitbTx_tsS66YVp5t99LjphoZqgY2j9HdpsgA9DwdP_ZuwaYkQzqNIVGFu1ZEQYBWUUTay0xLyVCZU6dh5fjqKE-BZpnhiCAP3x8KYEVRTKgkT3JqrQ9QuygKOELZHiyXVUS6VSbhQikWSKWmUpkAg58cocAKZvdesF7ONLE7-mD9FO07mNYzqDLWr1RrO0bb-rOYfqwt_V18LKZei
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BX1SceLdPPg2urVpmyaPMjdWdmHolL2NXE7nYGtlbv5-k6xTfPDBtxACJSc055LvfB9C99oXsSYs9lQiY1utis0_54NHTbRAZAaauoL-ay8ZDNh4zIdls7rrhQEABz6Duh26t3xdqLUtlTVsdsJNNLiL9qx0VtmuVaK2Ap830uZjmvZbMfejsG6FwR0ZJ_mlnOIcR_von588RtWfFjw8_HYuJ2gH8lP0tMXJ4SLHw-aD112AcTW1GlbztWU8MEuxmE8Lk_G_LbAqxTjt7LNDTpdEVHOsLam_LZRV0Uu7NWp2vFIUwZsFAV95mbmQOAdzRWlpcjslIItFRKQKbeyngjACliSSRdqnYF9ZKNWcKEKETzkzDusMVfIih3OEzdZCQVSQCakjxqWkgaBSaKkI-JCxC1S1Bpm8b3gvJltbXP4xf4cOOqN-b9JLB90rdGjtvwFVXaPKarmGG7SvPlezj-WtO7cvIBKa6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+2nd+International+Conference+on+3D+Immersion%2C+Interaction+and+Multi-sensory+Experiences+%28ICDIIME%29&rft.atitle=Research+on+PCA-Kmeans%2B%2B+clustering+algorithm+considering+Spatiotemporal+dimension&rft.au=Huang%2C+Jiale&rft.au=Dai%2C+Jingtong&rft.au=Li%2C+Yanjin&rft.date=2023-06-01&rft.pub=IEEE&rft.spage=195&rft.epage=201&rft_id=info:doi/10.1109%2FICDIIME59043.2023.00042&rft.externalDocID=10229729