Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension

Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) s. 195 - 201
Hlavní autori: Huang, Jiale, Dai, Jingtong, Li, Yanjin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm.
AbstractList Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm.
Author Huang, Jiale
Dai, Jingtong
Li, Yanjin
Author_xml – sequence: 1
  givenname: Jiale
  surname: Huang
  fullname: Huang, Jiale
  email: 602946539@qq.com
  organization: Hohai University,Nanjing,China
– sequence: 2
  givenname: Jingtong
  surname: Dai
  fullname: Dai, Jingtong
  email: 483608548@qq.com
  organization: Hohai University,Nanjing,China
– sequence: 3
  givenname: Yanjin
  surname: Li
  fullname: Li, Yanjin
  email: 2543737907@qq.com
  organization: Dalian Jiaotong University,Dalian,China
BookMark eNotj1FLwzAURiPog879A8G-j9Z7k7RNHkedWpwoU59HmtxugTYpbX3w3zuYTx-cAwe-G3YZYiDG7hEyRNAPdfVY12-bXIMUGQcuMgCQ_IItdamVyEFwoVBds92OJjKjPSYxJB_VOn3tyYRptUps9zPNNPpwSEx3iKOfj31iY5i8O9PPwcw-ztQPcTRd4nxPJxnDLbtqTTfR8n8X7Ptp81W9pNv357pab1OPqOe0Nc5pTYjomlxqa6jNjeSNFaAALApJqiwbJR0UBIhFUTjNLecGitMFEAt2d-56ItoPo-_N-LtH4FyXXIs_1f1OmQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDIIME59043.2023.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323818
EndPage 201
ExternalDocumentID 10229729
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303
IEDL.DBID RIE
IngestDate Wed Sep 13 05:31:09 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303
PageCount 7
ParticipantIDs ieee_primary_10229729
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle 2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME)
PublicationTitleAbbrev ICDIIME
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8410802
Snippet Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm...
SourceID ieee
SourceType Publisher
StartPage 195
SubjectTerms AFC Data
Classification algorithms
Clustering algorithms
Data mining
Dimensionality reduction
Interference
K-means
PCA
Spatiotemporal clustering algorithm
Spatiotemporal phenomena
Visualization
Title Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension
URI https://ieeexplore.ieee.org/document/10229729
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXgraZPd7GZzlNpiEUvxAb2VPGa10O5K3fr7TbJbxYMHyWUIgcAEMpnJN9-H0LVKtDRUKcIMA8KdTXSsFdERVxlQAwnUYhNiMslmMzltmtVDLwwABPAZ9LwZ_vJtaTa-VNb32Yl0r8EWagmR1s1aDWaLUdkfD27H44dhIimPe14WPFBxRr90U0LYGO3_c8MD1PlpwMPT79ByiHagOEKPW5QcLgs8HdyQ-xW4QNPtYrPceL4DtxSr5Wvp8v23FTaNFKeffQq46YaGaomtp_T3ZbIOehkNnwd3pJFEIAvGZEVydx1JCe6CstpldkZBnigeaRP7l59hMYdMCJ1xS1PwfyxpamVkokjRVGYuXB2jdlEWcIIwk7lK8jjmAhS3wiqa5FGqTJZbQ904RR3vkPl7zXox3_ri7I_5c7TnfV7DqC5Qu1pv4BLtms9q8bG-Cmf1BV_RmK4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDt5K2mw2-8hRakuXPihaobeSTWa10O5Kbf39Jtmt4sGD5DKEQGACmczkm-9D6F4GqVBUSuIpDwg3Nkn9VJKUcRkDVRBAKTYRjUbxdCrGVbO664UBAAc-g6Y13V--LtTGlspaNjsR5jW4i_YCzhkt27Uq1JZHRStpPybJsBMIyv2mFQZ3ZJzsl3KKCxzdo39ueYzqPy14ePwdXE7QDuSn6GmLk8NFjsftB9Jfggk1jQZWi41lPDBLsVy8Fibjf1tiVYlx2tlnh5yuiKgWWFtSf1soq6OXbmfS7pFKFIHMPU-sSWYuJCHAXFE6NbmdkpAFkrNU-fbtpzyfQxxFacw1DcH-soShFkwxJmkoYhOwzlAtL3I4R9gTmQwy3-cRSK4jLWmQsVCqONOKmnGB6tYhs_eS92K29cXlH_N36KA3GQ5mg2TUv0KH1v8lqOoa1darDdygffW5nn-sbt25fQGAI5v1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+2nd+International+Conference+on+3D+Immersion%2C+Interaction+and+Multi-sensory+Experiences+%28ICDIIME%29&rft.atitle=Research+on+PCA-Kmeans%2B%2B+clustering+algorithm+considering+Spatiotemporal+dimension&rft.au=Huang%2C+Jiale&rft.au=Dai%2C+Jingtong&rft.au=Li%2C+Yanjin&rft.date=2023-06-01&rft.pub=IEEE&rft.spage=195&rft.epage=201&rft_id=info:doi/10.1109%2FICDIIME59043.2023.00042&rft.externalDocID=10229729