Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension
Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction...
Uložené v:
| Vydané v: | 2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) s. 195 - 201 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm. |
|---|---|
| AbstractList | Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm. |
| Author | Huang, Jiale Dai, Jingtong Li, Yanjin |
| Author_xml | – sequence: 1 givenname: Jiale surname: Huang fullname: Huang, Jiale email: 602946539@qq.com organization: Hohai University,Nanjing,China – sequence: 2 givenname: Jingtong surname: Dai fullname: Dai, Jingtong email: 483608548@qq.com organization: Hohai University,Nanjing,China – sequence: 3 givenname: Yanjin surname: Li fullname: Li, Yanjin email: 2543737907@qq.com organization: Dalian Jiaotong University,Dalian,China |
| BookMark | eNotj1FLwzAURiPog879A8G-j9Z7k7RNHkedWpwoU59HmtxugTYpbX3w3zuYTx-cAwe-G3YZYiDG7hEyRNAPdfVY12-bXIMUGQcuMgCQ_IItdamVyEFwoVBds92OJjKjPSYxJB_VOn3tyYRptUps9zPNNPpwSEx3iKOfj31iY5i8O9PPwcw-ztQPcTRd4nxPJxnDLbtqTTfR8n8X7Ptp81W9pNv357pab1OPqOe0Nc5pTYjomlxqa6jNjeSNFaAALApJqiwbJR0UBIhFUTjNLecGitMFEAt2d-56ItoPo-_N-LtH4FyXXIs_1f1OmQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICDIIME59043.2023.00042 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350323818 |
| EndPage | 201 |
| ExternalDocumentID | 10229729 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 13 05:31:09 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-fadd99e111db549caef5a42bc30800c134e877b84d06e011666d92c22a0698303 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10229729 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) |
| PublicationTitleAbbrev | ICDIIME |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8410802 |
| Snippet | Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 195 |
| SubjectTerms | AFC Data Classification algorithms Clustering algorithms Data mining Dimensionality reduction Interference K-means PCA Spatiotemporal clustering algorithm Spatiotemporal phenomena Visualization |
| Title | Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension |
| URI | https://ieeexplore.ieee.org/document/10229729 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXgraZPd7GZzlNpiEUvxAb2VPGa10O5K3fr7TbJbxYMHyWUIgcAEMpnJN9-H0LVKtDRUKcIMA8KdTXSsFdERVxlQAwnUYhNiMslmMzltmtVDLwwABPAZ9LwZ_vJtaTa-VNb32Yl0r8EWagmR1s1aDWaLUdkfD27H44dhIimPe14WPFBxRr90U0LYGO3_c8MD1PlpwMPT79ByiHagOEKPW5QcLgs8HdyQ-xW4QNPtYrPceL4DtxSr5Wvp8v23FTaNFKeffQq46YaGaomtp_T3ZbIOehkNnwd3pJFEIAvGZEVydx1JCe6CstpldkZBnigeaRP7l59hMYdMCJ1xS1PwfyxpamVkokjRVGYuXB2jdlEWcIIwk7lK8jjmAhS3wiqa5FGqTJZbQ904RR3vkPl7zXox3_ri7I_5c7TnfV7DqC5Qu1pv4BLtms9q8bG-Cmf1BV_RmK4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDt5K2mw2-8hRakuXPihaobeSTWa10O5Kbf39Jtmt4sGD5DKEQGACmczkm-9D6F4GqVBUSuIpDwg3Nkn9VJKUcRkDVRBAKTYRjUbxdCrGVbO664UBAAc-g6Y13V--LtTGlspaNjsR5jW4i_YCzhkt27Uq1JZHRStpPybJsBMIyv2mFQZ3ZJzsl3KKCxzdo39ueYzqPy14ePwdXE7QDuSn6GmLk8NFjsftB9Jfggk1jQZWi41lPDBLsVy8Fibjf1tiVYlx2tlnh5yuiKgWWFtSf1soq6OXbmfS7pFKFIHMPU-sSWYuJCHAXFE6NbmdkpAFkrNU-fbtpzyfQxxFacw1DcH-soShFkwxJmkoYhOwzlAtL3I4R9gTmQwy3-cRSK4jLWmQsVCqONOKmnGB6tYhs_eS92K29cXlH_N36KA3GQ5mg2TUv0KH1v8lqOoa1darDdygffW5nn-sbt25fQGAI5v1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+2nd+International+Conference+on+3D+Immersion%2C+Interaction+and+Multi-sensory+Experiences+%28ICDIIME%29&rft.atitle=Research+on+PCA-Kmeans%2B%2B+clustering+algorithm+considering+Spatiotemporal+dimension&rft.au=Huang%2C+Jiale&rft.au=Dai%2C+Jingtong&rft.au=Li%2C+Yanjin&rft.date=2023-06-01&rft.pub=IEEE&rft.spage=195&rft.epage=201&rft_id=info:doi/10.1109%2FICDIIME59043.2023.00042&rft.externalDocID=10229729 |