Decision-Making for Satellite Anti-Interception Missions Leveraging Multi-Agent Reinforcement Learning

Many-to-many spacecraft autonomous evasion missions necessitate highly coordinated decision-making among several spacecraft to successfully avoid interceptions. Conventional control methods often struggle to manage the inherent complexity and uncertainty of these missions. In response to this challe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) s. 1 - 7
Hlavní autori: Chen, Zixuan, Wang, Jianqi, Wang, Dan, Yu, Sheng, Huo, Jing, Gao, Yang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.09.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many-to-many spacecraft autonomous evasion missions necessitate highly coordinated decision-making among several spacecraft to successfully avoid interceptions. Conventional control methods often struggle to manage the inherent complexity and uncertainty of these missions. In response to this challenge, we employ multi-agent reinforcement learning (MARL) algorithms that draw upon machine learning and game theory concepts. Our work is devoted to implementing MARL to facilitate autonomous and intelligent evasion maneuvers by spacecraft, considering the dynamic nature of the space environment and the multiple agent interactions. We utilize the Satellite Tool Kit (STK) as a simulation environment and assess cutting-edge MARL algorithms, with the goal of showcasing the potential of MARL in complex spacecraft evasion missions. Our research endeavors to enhance the autonomy, adaptability, and mission success rate of spacecraft systems under unpredictable circumstances, thereby facilitating more intelligent and adaptive space exploration.
AbstractList Many-to-many spacecraft autonomous evasion missions necessitate highly coordinated decision-making among several spacecraft to successfully avoid interceptions. Conventional control methods often struggle to manage the inherent complexity and uncertainty of these missions. In response to this challenge, we employ multi-agent reinforcement learning (MARL) algorithms that draw upon machine learning and game theory concepts. Our work is devoted to implementing MARL to facilitate autonomous and intelligent evasion maneuvers by spacecraft, considering the dynamic nature of the space environment and the multiple agent interactions. We utilize the Satellite Tool Kit (STK) as a simulation environment and assess cutting-edge MARL algorithms, with the goal of showcasing the potential of MARL in complex spacecraft evasion missions. Our research endeavors to enhance the autonomy, adaptability, and mission success rate of spacecraft systems under unpredictable circumstances, thereby facilitating more intelligent and adaptive space exploration.
Author Gao, Yang
Huo, Jing
Yu, Sheng
Chen, Zixuan
Wang, Dan
Wang, Jianqi
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Chen
  fullname: Chen, Zixuan
  email: chenzx@nju.edu.cn
  organization: Nanjing University,Department of Computer Science,Nanjing,China
– sequence: 2
  givenname: Jianqi
  surname: Wang
  fullname: Wang, Jianqi
  email: 342564222@qq.com
  organization: Nanjing University,Department of Computer Science,Nanjing,China
– sequence: 3
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  email: wangdan_ict_hit@163.com
  organization: Institute of Spacecraft System Engineering (ISSE), China Academy of Space Technology (CAST),Beijing,China
– sequence: 4
  givenname: Sheng
  surname: Yu
  fullname: Yu, Sheng
  email: yusheng86@outlook.com
  organization: Institute of Spacecraft System Engineering (ISSE), China Academy of Space Technology (CAST),Beijing,China
– sequence: 5
  givenname: Jing
  surname: Huo
  fullname: Huo, Jing
  email: huojing@nju.edu.cn
  organization: Nanjing University,Department of Computer Science,Nanjing,China
– sequence: 6
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
  email: gaoy@nju.edu.cn
  organization: Nanjing University,Department of Computer Science,Nanjing,China
BookMark eNo1j9tKw0AURUfQB639A8H8QOLcMsl5DKmXQkLB6nM5Tc6EwXRSklHw701QnzYb1l6wb9ilHzwxdi94IgSHh82u3BsOWZZILlUiuAQNXFywNWSQq5QrUKkU18xuqHGTG3xc44fzXWSHMdpjoL53gaLCBxdvfaCxoXOYsah204JPUUVfNGK3bOrPfsaKjnyIXsn52dHQaWkV4ehn5JZdWewnWv_lir0_Pb6VL3G1e96WRRU7ISDENgUwLSJonvGMrEwJWmlNbkSTa21ybLG1oDTmbcrTBjnqozL6KKXNkSu1Yne_XkdEh_PoTjh-H_7vqx9upFZ3
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS60977.2023.10294901
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350393521
EndPage 7
ExternalDocumentID 10294901
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-f5996daa940707ef25e9d2f6861c84468adadf934a8d505ca0a4b364b22f8a033
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f5996daa940707ef25e9d2f6861c84468adadf934a8d505ca0a4b364b22f8a033
PageCount 7
ParticipantIDs ieee_primary_10294901
PublicationCentury 2000
PublicationDate 2023-Sept.-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8530775
Snippet Many-to-many spacecraft autonomous evasion missions necessitate highly coordinated decision-making among several spacecraft to successfully avoid...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Heuristic algorithms
Machine learning algorithms
multi-agent reinforcement learning
Reinforcement learning
Satellites
Space vehicles
spacecraft evasion missions
spacecraft systems
Training
Uncertainty
Title Decision-Making for Satellite Anti-Interception Missions Leveraging Multi-Agent Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10294901
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29SwMxFA9aHJxUrPhNBtecd0l6l4yltTjYWqxCt5LLe5FbrtJe_ftN0qvi4OAWQiCQD_Ley--DkDsHYFNQjqEFySRayXQvZK0SetJqJRSqaDZRTCZqPtfTlqweuTCIGMFnmIRm_MuHpd2EUpm_4VxLHdha-0WRb8laLWYrS_X98Hkwy1Mf0CTBEzzZjf7lmxKfjdHRPyc8Jt0fAh6dfj8tJ2QP61Pihq0fDhtHCynq4006M1FSs0Har5uKxQJfi1Sh4ypAXOs1fUJ_YKMdEY2EW9YPhCr6glE21cYKIW2VVt-75G308Dp4ZK1NAquyTDfMBYUVMEbLIN2DjvdQA3e5yjOrfLanDBhwWkijwMc71qRGliKXJedOmVSIM9KplzWeE-p88gKuND4ttLJwpSoNCBDcWpQGhbwg3bBIi4-tEsZitz6Xf_RfkcOwFQFfwfk16TSrDd6QA_vZVOvVbdy_L9SLoFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECammuhJjTW-5eCVugt0C8emtalxWxtbk94aFgazl61pt_5-AanGgwdvhJCQ8Agzw_dA6M4aoxMjLAFtOOGgOZFtn7Vy0-ZaCiZABLOJzngs5nM5iWT1wIUBgAA-g5Zvhr98s9QbXypzN5xKLj1ba9dbZ0W6VkRtpYm87z_3plniQpqWdwVvbcf_ck4JD8fg8J9THqHmDwUPT74fl2O0A9UJsv3oiENGwUQKu4gTT1UQ1awBd6u6JKHEF7EqeFR6kGu1xjm4IxsMiXCg3JKup1ThFwjCqTrUCHHUWn1rotfBw6w3JNEogZRpKmtivcaKUUpyL94DlrZBGmozkaVauHxPKKOMlYwrYVzEo1WieMEyXlBqhUoYO0WNalnBGcLWpS_GFsolhpp3bCEKZZhhVGvgChg_R02_SIv3Ly2MxXZ9Lv7ov0X7w9koX-SP46dLdOC3xaMtKL1CjXq1gWu0pz_qcr26CXv5CVpVo5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Decision-Making+for+Satellite+Anti-Interception+Missions+Leveraging+Multi-Agent+Reinforcement+Learning&rft.au=Chen%2C+Zixuan&rft.au=Wang%2C+Jianqi&rft.au=Wang%2C+Dan&rft.au=Yu%2C+Sheng&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294901&rft.externalDocID=10294901