Rapid Identification of Protein Formulations with Bayesian Optimisation
Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the...
Uložené v:
| Vydané v: | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) s. 776 - 781 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
15.12.2023
|
| Predmet: | |
| ISSN: | 1946-0759 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the promising combinations of buffer and excipients that can help maintain both the stability and efficacy of the drug. In this paper, we propose an interactive Bayesian Optimisation approach that streamlines the buffer screening process and reduces the number of experiments needed to identify an optimal combination of buffer and excipients. Our approach employs two novel formulations of the (multi-buffer) optimisation problem: (i) one that unifies all buffers into a single Bayesian Optimisation framework, and (ii) the other that performs meta-learning to aggregate important excipient information over multiple buffers, in order to predict the most promising buffer and excipients combination to sample next. Our experimental results show that the proposed approach can identify an optimal combination of buffer and excipients while minimising the number of experiments required, and demonstrate the potential of using Bayesian Optimisation to enhance the protein formulation process. |
|---|---|
| AbstractList | Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the promising combinations of buffer and excipients that can help maintain both the stability and efficacy of the drug. In this paper, we propose an interactive Bayesian Optimisation approach that streamlines the buffer screening process and reduces the number of experiments needed to identify an optimal combination of buffer and excipients. Our approach employs two novel formulations of the (multi-buffer) optimisation problem: (i) one that unifies all buffers into a single Bayesian Optimisation framework, and (ii) the other that performs meta-learning to aggregate important excipient information over multiple buffers, in order to predict the most promising buffer and excipients combination to sample next. Our experimental results show that the proposed approach can identify an optimal combination of buffer and excipients while minimising the number of experiments required, and demonstrate the potential of using Bayesian Optimisation to enhance the protein formulation process. |
| Author | Aleti, Aldeida Huynh, Viet Webb, Geoffrey I Say, Buser Vogel, Peter Cao, Lucy |
| Author_xml | – sequence: 1 givenname: Viet surname: Huynh fullname: Huynh, Viet email: viet.huynh@monash.edu organization: Monash University,Melbourne,Australia – sequence: 2 givenname: Buser surname: Say fullname: Say, Buser email: buser.say@monash.edu organization: Monash University,Melbourne,Australia – sequence: 3 givenname: Peter surname: Vogel fullname: Vogel, Peter email: peter.vogel@cslbehring.com.au organization: CSL Behring,Melbourne,Australia – sequence: 4 givenname: Lucy surname: Cao fullname: Cao, Lucy email: lucy.cao@cslbehring.com.au organization: CSL Behring,Melbourne,Australia – sequence: 5 givenname: Geoffrey I surname: Webb fullname: Webb, Geoffrey I email: geoff.webb@monash.edu organization: Monash University,Melbourne,Australia – sequence: 6 givenname: Aldeida surname: Aleti fullname: Aleti, Aldeida email: aldeida.aleti@monash.edu organization: Monash University,Melbourne,Australia |
| BookMark | eNotjNtKw0AURUdRsNb8gcL8QOI5c8nMeazF1kCkIvpcpskMjjQXkoj071uqTxvWWuxbdtV2rWfsASFDBHoslq_lQlsyJhMgZAaAKC9YQoas1CCVliq_ZDMkladgNN2wZBy_4dQB5SRpxtbvro81L2rfTjHEyk2xa3kX-NvQTT62fNUNzc_-jEf-G6cv_uQOfoyu5Zt-ik0cz-6OXQe3H33yv3P2uXr-WL6k5WZdLBdlGhFpSoM02uwUOKuEdMpWVbAg0NS5QUXkvUUDqrYWUAelxKlGK2TY2RCQKpJzdv_3G733236IjRsOWwSVAwiSRy0zTtA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLA58977.2023.00113 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350345346 |
| EISSN | 1946-0759 |
| EndPage | 781 |
| ExternalDocumentID | 10460029 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: CSL Behring funderid: 10.13039/100008322 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i119t-f3757b40a8423a48ccf80217d671499ee81704d88015f4427571823fb8ff19c93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:17:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-f3757b40a8423a48ccf80217d671499ee81704d88015f4427571823fb8ff19c93 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10460029 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Dec.-15 |
| PublicationDateYYYYMMDD | 2023-12-15 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) |
| PublicationTitleAbbrev | ICMLA |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001096939 |
| Score | 2.2409296 |
| Snippet | Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 776 |
| SubjectTerms | Bayes methods Bayesian optimisation Drugs Industries Metalearning Protein buffer optimisation Proteins Stability analysis Transportation |
| Title | Rapid Identification of Protein Formulations with Bayesian Optimisation |
| URI | https://ieeexplore.ieee.org/document/10460029 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePCkYsVvcvCadneTbZKjFqtCrUUUeiv5hB5sS7sV_PfOpKvFgwdv2RAIzJB9LzPzMoRceyD5qogZA-zyTEgTmeXWsJgB2bCA8MElTw_kcKjGYz2qxepJCxNCSMVnoY3DlMv3c7fGUFkH85GYRmqQhpTdjVhrG1ABMq65rlU68NV57D0NbkoFm7axSXhKOvBfXVQSiPT3_7n9AWlt5Xh09AM0h2QnzI7I_YtZTD3dCG1jHXmj84grsYMl7QMbrXtzrSiGW-mt-QyomaTP8J94r-t4WuStf_fae2B1VwQ2zXNdschlKa3IjAImZIRyLiq8WPiuhNuODgGf3BMezmVeRiEKWA3e4NGqGHPtND8mzdl8Fk4IFT4onpkiAuYL2_VWSJfx0nAdXQHc45S00AqTxebhi8m3Ac7-mD8ne2horPbIywvSrJbrcEl23Uc1XS2vkru-AP-vlRk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CnpSseLbHLxuu7vJdpOjFmuL21qkQm8lT-ihD_oQ_PdO0tXiwYO3zRLYMEP2-zIzXwbg3iDJ56mLI8QuE7FcukhRJSMXI9lQiPBWB08Xea_Hh0PRL8XqQQtjrQ3FZ7bmH0Mu38z02ofK6j4f6dNIu7CXMZbGG7nWNqSCdFxQUep0cFTvNLvFQ8bxszXfJjykHeivPioBRlpH_1zAMVS3gjzS_4GaE9ix01N4fpPzsSEbqa0rY29k5vxM38OStJCPlt25lsQHXMmj_LReNUle8U8xKSt5qvDeeho021HZFyEaJ4lYRY7mWa5YLDlyIcm41o77o4Vp5HjeEdb6S_eYwZ2ZZA7thLPRH9Qp7lwitKBnUJnOpvYcCDOW01imDlGfqYZRLNcxzSQVTqfIPi6g6q0wmm-uvhh9G-Dyj_d3cNAedItR0em9XMGhN7qv_Uiya6isFmt7A_v6YzVeLm6D674A9DyYYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Rapid+Identification+of+Protein+Formulations+with+Bayesian+Optimisation&rft.au=Huynh%2C+Viet&rft.au=Say%2C+Buser&rft.au=Vogel%2C+Peter&rft.au=Cao%2C+Lucy&rft.date=2023-12-15&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=776&rft.epage=781&rft_id=info:doi/10.1109%2FICMLA58977.2023.00113&rft.externalDocID=10460029 |