Rapid Identification of Protein Formulations with Bayesian Optimisation

Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) s. 776 - 781
Hlavní autori: Huynh, Viet, Say, Buser, Vogel, Peter, Cao, Lucy, Webb, Geoffrey I, Aleti, Aldeida
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 15.12.2023
Predmet:
ISSN:1946-0759
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the promising combinations of buffer and excipients that can help maintain both the stability and efficacy of the drug. In this paper, we propose an interactive Bayesian Optimisation approach that streamlines the buffer screening process and reduces the number of experiments needed to identify an optimal combination of buffer and excipients. Our approach employs two novel formulations of the (multi-buffer) optimisation problem: (i) one that unifies all buffers into a single Bayesian Optimisation framework, and (ii) the other that performs meta-learning to aggregate important excipient information over multiple buffers, in order to predict the most promising buffer and excipients combination to sample next. Our experimental results show that the proposed approach can identify an optimal combination of buffer and excipients while minimising the number of experiments required, and demonstrate the potential of using Bayesian Optimisation to enhance the protein formulation process.
AbstractList Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during the storage, transportation and administration of the drug. Buffer screening is the first stage of this formulation process that selects the promising combinations of buffer and excipients that can help maintain both the stability and efficacy of the drug. In this paper, we propose an interactive Bayesian Optimisation approach that streamlines the buffer screening process and reduces the number of experiments needed to identify an optimal combination of buffer and excipients. Our approach employs two novel formulations of the (multi-buffer) optimisation problem: (i) one that unifies all buffers into a single Bayesian Optimisation framework, and (ii) the other that performs meta-learning to aggregate important excipient information over multiple buffers, in order to predict the most promising buffer and excipients combination to sample next. Our experimental results show that the proposed approach can identify an optimal combination of buffer and excipients while minimising the number of experiments required, and demonstrate the potential of using Bayesian Optimisation to enhance the protein formulation process.
Author Aleti, Aldeida
Huynh, Viet
Webb, Geoffrey I
Say, Buser
Vogel, Peter
Cao, Lucy
Author_xml – sequence: 1
  givenname: Viet
  surname: Huynh
  fullname: Huynh, Viet
  email: viet.huynh@monash.edu
  organization: Monash University,Melbourne,Australia
– sequence: 2
  givenname: Buser
  surname: Say
  fullname: Say, Buser
  email: buser.say@monash.edu
  organization: Monash University,Melbourne,Australia
– sequence: 3
  givenname: Peter
  surname: Vogel
  fullname: Vogel, Peter
  email: peter.vogel@cslbehring.com.au
  organization: CSL Behring,Melbourne,Australia
– sequence: 4
  givenname: Lucy
  surname: Cao
  fullname: Cao, Lucy
  email: lucy.cao@cslbehring.com.au
  organization: CSL Behring,Melbourne,Australia
– sequence: 5
  givenname: Geoffrey I
  surname: Webb
  fullname: Webb, Geoffrey I
  email: geoff.webb@monash.edu
  organization: Monash University,Melbourne,Australia
– sequence: 6
  givenname: Aldeida
  surname: Aleti
  fullname: Aleti, Aldeida
  email: aldeida.aleti@monash.edu
  organization: Monash University,Melbourne,Australia
BookMark eNotjNtKw0AURUdRsNb8gcL8QOI5c8nMeazF1kCkIvpcpskMjjQXkoj071uqTxvWWuxbdtV2rWfsASFDBHoslq_lQlsyJhMgZAaAKC9YQoas1CCVliq_ZDMkladgNN2wZBy_4dQB5SRpxtbvro81L2rfTjHEyk2xa3kX-NvQTT62fNUNzc_-jEf-G6cv_uQOfoyu5Zt-ik0cz-6OXQe3H33yv3P2uXr-WL6k5WZdLBdlGhFpSoM02uwUOKuEdMpWVbAg0NS5QUXkvUUDqrYWUAelxKlGK2TY2RCQKpJzdv_3G733236IjRsOWwSVAwiSRy0zTtA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA58977.2023.00113
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350345346
EISSN 1946-0759
EndPage 781
ExternalDocumentID 10460029
Genre orig-research
GrantInformation_xml – fundername: CSL Behring
  funderid: 10.13039/100008322
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i119t-f3757b40a8423a48ccf80217d671499ee81704d88015f4427571823fb8ff19c93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f3757b40a8423a48ccf80217d671499ee81704d88015f4427571823fb8ff19c93
PageCount 6
ParticipantIDs ieee_primary_10460029
PublicationCentury 2000
PublicationDate 2023-Dec.-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ICMLA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2409296
Snippet Protein formulation is a critical aspect of the pharmaceutical industry which aims to improve the efficacy and the safety of the active drug ingredients during...
SourceID ieee
SourceType Publisher
StartPage 776
SubjectTerms Bayes methods
Bayesian optimisation
Drugs
Industries
Metalearning
Protein buffer optimisation
Proteins
Stability analysis
Transportation
Title Rapid Identification of Protein Formulations with Bayesian Optimisation
URI https://ieeexplore.ieee.org/document/10460029
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePCkYsVvcvCadneTbZKjFqtCrUUUeiv5hB5sS7sV_PfOpKvFgwdv2RAIzJB9LzPzMoRceyD5qogZA-zyTEgTmeXWsJgB2bCA8MElTw_kcKjGYz2qxepJCxNCSMVnoY3DlMv3c7fGUFkH85GYRmqQhpTdjVhrG1ABMq65rlU68NV57D0NbkoFm7axSXhKOvBfXVQSiPT3_7n9AWlt5Xh09AM0h2QnzI7I_YtZTD3dCG1jHXmj84grsYMl7QMbrXtzrSiGW-mt-QyomaTP8J94r-t4WuStf_fae2B1VwQ2zXNdschlKa3IjAImZIRyLiq8WPiuhNuODgGf3BMezmVeRiEKWA3e4NGqGHPtND8mzdl8Fk4IFT4onpkiAuYL2_VWSJfx0nAdXQHc45S00AqTxebhi8m3Ac7-mD8ne2horPbIywvSrJbrcEl23Uc1XS2vkru-AP-vlRk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CnpSseLbHLxuu7vJdpOjFmuL21qkQm8lT-ihD_oQ_PdO0tXiwYO3zRLYMEP2-zIzXwbg3iDJ56mLI8QuE7FcukhRJSMXI9lQiPBWB08Xea_Hh0PRL8XqQQtjrQ3FZ7bmH0Mu38z02ofK6j4f6dNIu7CXMZbGG7nWNqSCdFxQUep0cFTvNLvFQ8bxszXfJjykHeivPioBRlpH_1zAMVS3gjzS_4GaE9ix01N4fpPzsSEbqa0rY29k5vxM38OStJCPlt25lsQHXMmj_LReNUle8U8xKSt5qvDeeho021HZFyEaJ4lYRY7mWa5YLDlyIcm41o77o4Vp5HjeEdb6S_eYwZ2ZZA7thLPRH9Qp7lwitKBnUJnOpvYcCDOW01imDlGfqYZRLNcxzSQVTqfIPi6g6q0wmm-uvhh9G-Dyj_d3cNAedItR0em9XMGhN7qv_Uiya6isFmt7A_v6YzVeLm6D674A9DyYYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Rapid+Identification+of+Protein+Formulations+with+Bayesian+Optimisation&rft.au=Huynh%2C+Viet&rft.au=Say%2C+Buser&rft.au=Vogel%2C+Peter&rft.au=Cao%2C+Lucy&rft.date=2023-12-15&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=776&rft.epage=781&rft_id=info:doi/10.1109%2FICMLA58977.2023.00113&rft.externalDocID=10460029