Post-Disaster Generation Dispatching for Enhanced Resilience: A Multi-Agent Deep Deterministic Policy Gradient Learning Approach

This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:North American Power Symposium (Online) s. 1 - 6
Hlavní autori: Abdelmalak, Michael, Hosseinpour, Hadis, Hotchkiss, Eliza, Ben-Idris, Mohammed
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.10.2022
Predmet:
ISSN:2833-003X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based enhancement strategies have pushed toward adopting intelligent-based algorithms, specifically for real-time control applications. In this paper, a multi-agent deep deterministic policy gradient learning algorithm is developed to dispatch distributed generators after an extreme event. The proposed approach aims to provide a fast-acting control algorithm for improved resilient operation of islanded distribution power systems. The problem is formulated as an iterative Markov decision process that consists of a system state, action space, and reward function. Each agent is responsible for dispatching a single DG and is trained to increase its cumulative reward value. A system state represents the system topology and characteristics whereas an action refers to DG power supply. A reward is computed based on the power balance mismatch value for each agent. Different failure scenarios are generated and used to train the proposed model. The proposed method is demonstrated on the IEEE 33-node distribution feeder system in the islanded mode. The results show the capability of the proposed algorithm to dispatch DGs for resilience enhancement.
AbstractList This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based enhancement strategies have pushed toward adopting intelligent-based algorithms, specifically for real-time control applications. In this paper, a multi-agent deep deterministic policy gradient learning algorithm is developed to dispatch distributed generators after an extreme event. The proposed approach aims to provide a fast-acting control algorithm for improved resilient operation of islanded distribution power systems. The problem is formulated as an iterative Markov decision process that consists of a system state, action space, and reward function. Each agent is responsible for dispatching a single DG and is trained to increase its cumulative reward value. A system state represents the system topology and characteristics whereas an action refers to DG power supply. A reward is computed based on the power balance mismatch value for each agent. Different failure scenarios are generated and used to train the proposed model. The proposed method is demonstrated on the IEEE 33-node distribution feeder system in the islanded mode. The results show the capability of the proposed algorithm to dispatch DGs for resilience enhancement.
Author Hotchkiss, Eliza
Ben-Idris, Mohammed
Abdelmalak, Michael
Hosseinpour, Hadis
Author_xml – sequence: 1
  givenname: Michael
  surname: Abdelmalak
  fullname: Abdelmalak, Michael
  email: mabdelmalak@nevada.unr.edu
  organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA
– sequence: 2
  givenname: Hadis
  surname: Hosseinpour
  fullname: Hosseinpour, Hadis
  email: hhosseinpour@unr.edu
  organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA
– sequence: 3
  givenname: Eliza
  surname: Hotchkiss
  fullname: Hotchkiss, Eliza
  email: eliza.hotchkiss@nrel.gov
  organization: National Renewable Energy Lab,Resilience System Design,Golden,CO,USA
– sequence: 4
  givenname: Mohammed
  surname: Ben-Idris
  fullname: Ben-Idris, Mohammed
  email: mbenidris@unr.edu
  organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA
BookMark eNo1kM1OwzAQhA0Cibb0DZDwC6Ss7Tg_3KK2FKQAFT8St8pxNq1R6kS2OfTGo5MKuOyMZlaftDsmZ7azSMg1gxljkN88FetXmTAJMw6czxgA40yIEzJmSSLjPOcsPiUjngkRAYiPCzL1_hMGyyFmMRuR73XnQ7QwXvmAjq7QolPBdJYOWa-C3hm7pU3n6NLulNVY0xf0pjU4-Fta0MevNpio2KINdIHYD2MA7Y01PhhN111r9IGunKrNcaVE5ewRWfS965TeXZLzRrUep386Ie93y7f5fVQ-rx7mRRkZxvIQNZBIrvNcaIjrOk2lUKIGUFXGK8ShUDxpJIgsTnnDquFuWVdSZBVLNSSVEhNy9cs1iLjpndkrd9j8f0z8AGbnY3Y
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NAPS56150.2022.10012133
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665499214
9781665499217
EISSN 2833-003X
EndPage 6
ExternalDocumentID 10012133
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-f0652c993c04dd7753a3d00ab82beec99a26f5038472f1b2145db538b17c06ba3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:11:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f0652c993c04dd7753a3d00ab82beec99a26f5038472f1b2145db538b17c06ba3
PageCount 6
ParticipantIDs ieee_primary_10012133
PublicationCentury 2000
PublicationDate 2022-Oct.-9
PublicationDateYYYYMMDD 2022-10-09
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-9
  day: 09
PublicationDecade 2020
PublicationTitle North American Power Symposium (Online)
PublicationTitleAbbrev NAPS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204141
Score 1.8241206
Snippet This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Dispatching
Distribution system
extreme weather events
Generators
Power supplies
Real-time systems
Reinforcement learning
resilience
Training
Title Post-Disaster Generation Dispatching for Enhanced Resilience: A Multi-Agent Deep Deterministic Policy Gradient Learning Approach
URI https://ieeexplore.ieee.org/document/10012133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtWjHAwquItzywprUdx27YIlpgqioeUrfKjwtEQmnVpsz8dGwnLTAwsESRrUiRrXv4fPcdQtferObSCaAmwCNOtRMpZXlEc6sSbXIwUDebkKNRfzJJx02xeqiFAYCQfAZd_xru8u3MrHyorEdrAlncQi0pRV2stQmoxIxwymmTw0VJ2htl46fEA8_dMZCx7vrrX31Ughm52_vnD-yjzndBHh5vTM0B2oLyEO3-YAkeoU_fdjcaFEvl0Qe4xkn7VcdubO4Urg81Yeei4mH5Fq798SMsi_cg2jc4w6EUN8p8qRUeAMzdo86UCShnXAOE8f0i5IhVuAGzvuKsoZJ30Mvd8Pn2IWraK0QFpWkV5c77YMb5J4Zwa6U7t6jYEqJ0n2kAN6GYyD0thkuWU-2R5lY7_aipNERoFR-jdjkr4QRhqp2akiCoSjWnINLESJWAEoI5Fy-Vp6jjF3M6rwka0_U6nv0xfo52_JaFpLn0ArWrxQou0bb5qIrl4irs-xcEhq8D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMAbRRP14hfGb3vwOli7bmXeFgEx4kIUE26k7d50iRkEhmf_dNtuoB48eFmWLkuW172Ptu_9HkLXxq2mXCugdIE5jEitUiJhDkkT4UuVgoKy2QSP49ZoFA6qYnVbCwMANvkMGubWnuUnE7UwW2VNUhLIvHW0YVpnVeVaqy0Vj7qMMFJlcRE3bMbR4Nk3yHO9EKS0sXz_VycV60i6u__8hD1U_y7Jw4OVs9lHa5AfoJ0fNMFD9Gka7zrtbC4M_ACXQGkjd6zHptrkms0mrINU3Mnf7ME_foJ59m6V-wZH2BbjOpEptsJtgKm-lLkyFuaMS4QwvpvZLLECV2jWVxxVXPI6eul2hrc9p2qw4GSEhIWT6viDKh2hKJclCdcrF-Elritki0oA_UDQIDW8GMZpSqSBmidSW0hJuHIDKbwjVMsnORwjTKQ2VBwCIkLJCAShr7jwQQQB1UFeyE9Q3QhzPC0ZGuOlHE__GL9CW73hY3_cv48fztC2mT6bQheeo1oxW8AF2lQfRTafXdp_4AtPvrJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=North+American+Power+Symposium+%28Online%29&rft.atitle=Post-Disaster+Generation+Dispatching+for+Enhanced+Resilience%3A+A+Multi-Agent+Deep+Deterministic+Policy+Gradient+Learning+Approach&rft.au=Abdelmalak%2C+Michael&rft.au=Hosseinpour%2C+Hadis&rft.au=Hotchkiss%2C+Eliza&rft.au=Ben-Idris%2C+Mohammed&rft.date=2022-10-09&rft.pub=IEEE&rft.eissn=2833-003X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNAPS56150.2022.10012133&rft.externalDocID=10012133