Post-Disaster Generation Dispatching for Enhanced Resilience: A Multi-Agent Deep Deterministic Policy Gradient Learning Approach
This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based e...
Uložené v:
| Vydané v: | North American Power Symposium (Online) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
09.10.2022
|
| Predmet: | |
| ISSN: | 2833-003X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based enhancement strategies have pushed toward adopting intelligent-based algorithms, specifically for real-time control applications. In this paper, a multi-agent deep deterministic policy gradient learning algorithm is developed to dispatch distributed generators after an extreme event. The proposed approach aims to provide a fast-acting control algorithm for improved resilient operation of islanded distribution power systems. The problem is formulated as an iterative Markov decision process that consists of a system state, action space, and reward function. Each agent is responsible for dispatching a single DG and is trained to increase its cumulative reward value. A system state represents the system topology and characteristics whereas an action refers to DG power supply. A reward is computed based on the power balance mismatch value for each agent. Different failure scenarios are generated and used to train the proposed model. The proposed method is demonstrated on the IEEE 33-node distribution feeder system in the islanded mode. The results show the capability of the proposed algorithm to dispatch DGs for resilience enhancement. |
|---|---|
| AbstractList | This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric distribution systems after a severe outage event. The increased computational complexities and sophisticated modeling procedure of resilience-based enhancement strategies have pushed toward adopting intelligent-based algorithms, specifically for real-time control applications. In this paper, a multi-agent deep deterministic policy gradient learning algorithm is developed to dispatch distributed generators after an extreme event. The proposed approach aims to provide a fast-acting control algorithm for improved resilient operation of islanded distribution power systems. The problem is formulated as an iterative Markov decision process that consists of a system state, action space, and reward function. Each agent is responsible for dispatching a single DG and is trained to increase its cumulative reward value. A system state represents the system topology and characteristics whereas an action refers to DG power supply. A reward is computed based on the power balance mismatch value for each agent. Different failure scenarios are generated and used to train the proposed model. The proposed method is demonstrated on the IEEE 33-node distribution feeder system in the islanded mode. The results show the capability of the proposed algorithm to dispatch DGs for resilience enhancement. |
| Author | Hotchkiss, Eliza Ben-Idris, Mohammed Abdelmalak, Michael Hosseinpour, Hadis |
| Author_xml | – sequence: 1 givenname: Michael surname: Abdelmalak fullname: Abdelmalak, Michael email: mabdelmalak@nevada.unr.edu organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA – sequence: 2 givenname: Hadis surname: Hosseinpour fullname: Hosseinpour, Hadis email: hhosseinpour@unr.edu organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA – sequence: 3 givenname: Eliza surname: Hotchkiss fullname: Hotchkiss, Eliza email: eliza.hotchkiss@nrel.gov organization: National Renewable Energy Lab,Resilience System Design,Golden,CO,USA – sequence: 4 givenname: Mohammed surname: Ben-Idris fullname: Ben-Idris, Mohammed email: mbenidris@unr.edu organization: University of Nevada-Reno,Electrical & Biomedical Eng,Reno,NV,USA |
| BookMark | eNo1kM1OwzAQhA0Cibb0DZDwC6Ss7Tg_3KK2FKQAFT8St8pxNq1R6kS2OfTGo5MKuOyMZlaftDsmZ7azSMg1gxljkN88FetXmTAJMw6czxgA40yIEzJmSSLjPOcsPiUjngkRAYiPCzL1_hMGyyFmMRuR73XnQ7QwXvmAjq7QolPBdJYOWa-C3hm7pU3n6NLulNVY0xf0pjU4-Fta0MevNpio2KINdIHYD2MA7Y01PhhN111r9IGunKrNcaVE5ewRWfS965TeXZLzRrUep386Ie93y7f5fVQ-rx7mRRkZxvIQNZBIrvNcaIjrOk2lUKIGUFXGK8ShUDxpJIgsTnnDquFuWVdSZBVLNSSVEhNy9cs1iLjpndkrd9j8f0z8AGbnY3Y |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NAPS56150.2022.10012133 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665499214 9781665499217 |
| EISSN | 2833-003X |
| EndPage | 6 |
| ExternalDocumentID | 10012133 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-f0652c993c04dd7753a3d00ab82beec99a26f5038472f1b2145db538b17c06ba3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:11:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-f0652c993c04dd7753a3d00ab82beec99a26f5038472f1b2145db538b17c06ba3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10012133 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct.-9 |
| PublicationDateYYYYMMDD | 2022-10-09 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | North American Power Symposium (Online) |
| PublicationTitleAbbrev | NAPS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204141 |
| Score | 1.8241206 |
| Snippet | This paper proposes a reinforcement learning-based approach for dispatching distributed generators (DGs) to enhance operational resilience of electric... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Dispatching Distribution system extreme weather events Generators Power supplies Real-time systems Reinforcement learning resilience Training |
| Title | Post-Disaster Generation Dispatching for Enhanced Resilience: A Multi-Agent Deep Deterministic Policy Gradient Learning Approach |
| URI | https://ieeexplore.ieee.org/document/10012133 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtWjHAwquItzywprUdx27YIlpgqioeUrfKjwtEQmnVpsz8dGwnLTAwsESRrUiRrXv4fPcdQtferObSCaAmwCNOtRMpZXlEc6sSbXIwUDebkKNRfzJJx02xeqiFAYCQfAZd_xru8u3MrHyorEdrAlncQi0pRV2stQmoxIxwymmTw0VJ2htl46fEA8_dMZCx7vrrX31Ughm52_vnD-yjzndBHh5vTM0B2oLyEO3-YAkeoU_fdjcaFEvl0Qe4xkn7VcdubO4Urg81Yeei4mH5Fq798SMsi_cg2jc4w6EUN8p8qRUeAMzdo86UCShnXAOE8f0i5IhVuAGzvuKsoZJ30Mvd8Pn2IWraK0QFpWkV5c77YMb5J4Zwa6U7t6jYEqJ0n2kAN6GYyD0thkuWU-2R5lY7_aipNERoFR-jdjkr4QRhqp2akiCoSjWnINLESJWAEoI5Fy-Vp6jjF3M6rwka0_U6nv0xfo52_JaFpLn0ArWrxQou0bb5qIrl4irs-xcEhq8D |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMAbRRP14hfGb3vwOli7bmXeFgEx4kIUE26k7d50iRkEhmf_dNtuoB48eFmWLkuW172Ptu_9HkLXxq2mXCugdIE5jEitUiJhDkkT4UuVgoKy2QSP49ZoFA6qYnVbCwMANvkMGubWnuUnE7UwW2VNUhLIvHW0YVpnVeVaqy0Vj7qMMFJlcRE3bMbR4Nk3yHO9EKS0sXz_VycV60i6u__8hD1U_y7Jw4OVs9lHa5AfoJ0fNMFD9Gka7zrtbC4M_ACXQGkjd6zHptrkms0mrINU3Mnf7ME_foJ59m6V-wZH2BbjOpEptsJtgKm-lLkyFuaMS4QwvpvZLLECV2jWVxxVXPI6eul2hrc9p2qw4GSEhIWT6viDKh2hKJclCdcrF-Elritki0oA_UDQIDW8GMZpSqSBmidSW0hJuHIDKbwjVMsnORwjTKQ2VBwCIkLJCAShr7jwQQQB1UFeyE9Q3QhzPC0ZGuOlHE__GL9CW73hY3_cv48fztC2mT6bQheeo1oxW8AF2lQfRTafXdp_4AtPvrJM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=North+American+Power+Symposium+%28Online%29&rft.atitle=Post-Disaster+Generation+Dispatching+for+Enhanced+Resilience%3A+A+Multi-Agent+Deep+Deterministic+Policy+Gradient+Learning+Approach&rft.au=Abdelmalak%2C+Michael&rft.au=Hosseinpour%2C+Hadis&rft.au=Hotchkiss%2C+Eliza&rft.au=Ben-Idris%2C+Mohammed&rft.date=2022-10-09&rft.pub=IEEE&rft.eissn=2833-003X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNAPS56150.2022.10012133&rft.externalDocID=10012133 |