An Empirical Study on Neural Networks Pruning: Trimming for Reducing Memory or Workload
Most of existing studies on neural network pruning only consider memory-based pruning strategies. However pruning for computational workload is often more important in hardware deployments due to a greater focus on model computation reductions. In addition, most pruning schemes restore model accurac...
Saved in:
| Published in: | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) pp. 1 - 7 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.09.2023
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!